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How are the Ptolemaic, Copernican, and Keplerian theories of the inner 
planets related to one another structurally, and how do they compare in 
accuracy ? The following analysis, making use of Bryant Tuckerman’s 
Planetary, Lunar, and Solar Positions, A.D. 2. to A.D. I649,1 as well as 
modem orbital elements extrapolated backwards in time, seeks to throw 
some new light on these questions. It will become apparent that the pre- 
Keplerian theories, while mirroring in a rough way certain general fea- 
tures of the motions of Venus and Mercury, were too inaccurate to justify 
the claim that they “manage to account satisfactorily for all naked-eye 
observations.”2 At the same time, the analysis will elucidate the empirical 
basis for the Ptolemaic devices- equant point and bisection of the eccen- 
tricity-that figure in the derivation of Kepler’s theory, and will indicate 
how the Ptolemaic and Copernican theories yielded clues supporting 
Kepler’s major hypothesis- the dynamic action of the Sun. 

Introductory remarks : the problem of the inner planets as it confronted 
Kepler. 

As is well known, the route leading to Kepler’s “new astronomy” involved 
primarily and unavoidably the study of the motions of Mars; for this 
planet alone had the requisite combination of properties-large enough 
eccentricity, nearness to the Earth, observability of heliocentric longitudes 
in all parts of the orbit. As Kepler puts it, “It was altogether necessary 
that we should either come to know the secrets of astronomy from the 
motions of Mars, or else remain perpetually ignorant of them.”3 But 
precisely because of the central premiss of the Keplerian program-its 
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affirmation of a single Sun-focused dynamics as determining the motions 
of all the planets-it was essential to its success that the characteristic 
features found in the motions of Mars be shown to be applicable to the 
other circumsolar planets as well. The application in the case of the re- 
maining superior planets, Jupiter and Saturn, was relatively straightfor- 
ward. The changes required for the inner planets were rather more abrupt 
and striking. 

From an early stage in Kepler's speculations, the inner planets had 
confronted him with a puzzle, because their motions as postulated by 
Ptolemy and Copernicus failed to accord with the heliocentric vision from 
which he set out. According to this vision, first formulated in print in the 
Mysterium Cosmographicum of 1596, the motive virtue whereby the pla- 
nets were moved had its source in the Sun, and decreased in strength with 
increasing distance from this source. Each planet was linked dynamically 
to the Sun; but between the various circumsolar planets no dynamic, 
causal linkage was imagined or assumed-each had its own separate 
theory, relating it to the Sun alone. In support of this hypothesis, Kepler 
showed in Chapter 20 of the Mysterium that of any two circumsolar 
planets the one farther from the Sun moved more slowly in its path; and 
in Chapter 22 that each of the superior planets as presented in Copernican 
theory moved more rapidly or more slowly according as it was closer to 
or farther from the Sun. The Copernican theories of Venus and Mercury, 
however, violated this pattern by incorporating motions that keep time 
with the Earth's annual motion. Kepler admits this difficulty, along with 
another having to do with the Earth's motion, in the concluding para- 
graph of Chapter 22: 

But . . . nothing is in every respect happy. For in Venus and Mercury this slowness 
and quickness is accommodated not to the distance of the planet from the Sun, but 
solely to the motion of the Earth. And if anyone assumes a different condition of 
motion for these planets from that found in the superior planets, what cause will he 
then propose in the case of the annual motion of the Earth? For neither according 
to Ptolemy nor according to Copcrnicus does this motion require an equant [a cen- 
ter about which the motion is angularly uniform. but which is not identical with the 
center of the planet's circular path, and which as a consequence implies that the pla- 
net's motion along its path is non-uniform]. Therefore, let this controversial question 
remain in suspense before the astronomer as judge.' 

The key thought required for a resolution of the problem first oc- 
curred to Kepler in late spring of 1601, when he was away from his 
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books, having journeyed from Prague to Graz on business connected 
with his wife’s inheritance; so we learn from a letter of June, 1601, to 
Maghi in Bologna.5 Already by this time Kepler had derived from the 
Tychonic observations of Mars a demonstration that the Earth increases 
and decreases its orbital speed according as it approaches or recedes from 
the Sun, and thus obeys the norm followed by the superior planets in the 
Copernican reformulation of Ptolemaic theory. This conclusion can be 
stated in a different way: contrary to the implication of Ptolemaic astro- 
nomy (when translated into heliostatic form), and contrary to the explicit 
assumption of Copernicus,the center of the Earth’s orbit was not identica1 
with the so-called equant point-the point about which the planet was 
assumed to move with uniform angular speed; rather, the center of the 
orbit was only about half as far from the Sun as the equant point. This 
“bisection of the eccentricity”, as it was called, now suggested itself to 
Kepler in Graz as an explanation for the disturbing motions in the Ptole- 
maic and Copernican theories of Venus and Mercury-the motions so 
incongruously commensurable with the Earth’s motion: “these supposed 
inequalities of the inferior planets are nothing else than the parallax re- 
sulting from the motion of approach and recession of the Earth, hitherto 
insufficiently known . . . ’’6 

Actually, as Kepler points out many years later in Book VI of his 
Epitome astronomiue Copernicanae (1621), the situation is more compli- 
cated: “both eccentricities, that of the great orb [the orbit of the Earth] 
as well as that of the eccentric of the planet [Venus or Mercury], were 
confounded in one in the astronomy of the ancients.”’ But, as also be- 
comes evident from Kepler’s discussion in the Epitome, the bisection of 
the eccentricity in the Ptolemaic theory of Venus is from Kepler’s point 
of view a reflection of the bisection of the eccentricity of the Sun or Earth, 
the eccentricity of Venus being comparatively small. In fact, Venus theory 
may well have been the locus of Ptolemy’s first discovery or introduction 
of the bisection of the eccentricity, for in the case of Venus, Ptolemy pre- 
sents the bisected eccentricity as emerging directly from and indeed im- 
posed by the appearances. Ptolemy can then have transferred this device 
to the superior planets, where the observational data do not of themselves 
suggest and do not provide so direct a confirmation of the bisection. It is 
probably a result of the lack of direct c o b a t i o n  in the case of the 
superior planets that later astronomers could come to look upon the 
bisection as (in Dreyer’s phrase) a “perfectly arbitrary 
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Under the Copernican transformation, the bisection as it occurs in the 
Ptolemaic theory of Venus is replaced by the incongruous annual oscilla- 
tion of the orbit of Venus over which Kepler puzzled. In the case of the 
superior planets, the bisection remains though in somewhat disguised 
form; deprived of its disguise by Maestlin, it becomes for Kepler a princi- 
pal clue to his celestia1 physics.9 On the basis of observational data, Tycho 
denies the quantitative exactitude of the bisection in the case of Mars, 
but Kepler’s analysis leads him to conclude that, when Tycho’s point has 
been rightly assessed, the eccentricity will nevertheless be found to be 
exactly bisected; and it is from this conclusion that he proceeds to the 
abandonment of the equant principle, to the attempt to derive the plane- 
tary motions from an explicit celestial dynamics, and thus to “the renova- 
tion of all astronomy.” A plausible reconstruction of the prehistory of the 
Keplerian ideas must thus accord a significant role to the Ptolemaic 
theory of Venus. 

The case of Mercury is markedly different from that of Venus. Mercury’s 
eccentricity is huge; the center of Mercury’s orbit is over four and a half 
times farther from the Sun than the center of the Earth’s orbit. It is one 
consequence of this difference that, whereas Ptolemy’s theories of Venus 
and the superior planets are formally alike, involving epicycle and deferent 
and equant point with bisected eccentricity, and differing only in their 
numerical parameters, the Ptolemaic theory of Mercury is more complicat- 
ed, resembling in this the Ptolemaic theory of the Moon: the center of 
the deferent is moved on a hypocycle and the epicycle is brought closest 
to the Earth not at one position 180” from the apogee of the deferent, as 
with the other planets, but at two positions 120” from the apogee on either 
side. In the Ptolemaic System, the extra complication in the theory of 
Mercury has a certain plausibility; as Ptolemy puts it in his Planetary 
Hypotheses, “The spheres nearest to the air [namely, those of the Moon 
and Mercury] move with many kinds of motion and resemble the nature 
of the element adjacent to them”-resemble, that is, the changeable air. 10 

With the Copernican transformation, however, the complications cease 
to have even this vague cosmological suitability for support. 

We have seen that Kepler from the beginning of his speculations looked 
with suspicion on the incorporation into the theories of the inner planets 
of motions with the periodicity of the Earth. When in the late spring of 
1601 he realized that part of the complication in Mercury’s case could 
arise from the failure of Ptolemy and Copernicus to bisect the eccentricity 
of the Earth (or Sun), he was still laboring under the conviction that the 
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planetary orbits were perfectly circular, and as a consequence he was 
exceedingly doubtful concerning the truth of the double perigee of Mer- 
cury.11 With his later discovery of the oval shape of the orbit, he comes to 
believe the mystery solved; and so in the Epitome he asserts that it was the 
elliptical shape of the orbit that forced Ptolemy to establish two perigees 
for Mercury.12 At the same time, he describes the observations used in 
the construction of the Ptolemaic theory as rough, and implies that they 
were tailored a bit to yield a symmetrical theory. 13 Although (as will be 
shown) Mercury does not in fact have two perigees, we shall see that 
Kepler’s second conclusion is plausible: the double perigee, though wrong, 
can be an exaggerated reflection of the ellipticity and inclination of Mer- 
cury’s orbit. 

It is thus evident that, from the time of the Mysterium Cosmographicum, 
Kepler saw the Ptolemaic and Copernican theories of Venus and Mercury 
as confronting him with puzzles demanding resolution. There are indica- 
tions that he was wrestling with these problems even during the early 
years of his “war against Mars”, and hoping to resolve them quickly.14 
His ultimate success in the case of Mercury turned out to depend on the 
prior resolution of the problem of Mars, and it then constituted a signifi- 
cant victory for his Martian paradigm, influential in the after years as 
leading to more general acceptance of the Keplerian ellipse and the Kep- 
lerian tables. In the case of Venus, an empirically satisfactory theory 
would have required less: circular orbits and equant points, for both the 
Earth and Venus, would have sufficed. Yet even had Kepler here retained 
rather than discarded these devices, his accomplishment would neverthe- 
less have constituted a new and revolutionary decipherment of the ap- 
pearances. 

Venus 

We first review the general phenomena that Ptolemy’s theory of Venus is 
designed to “save”, and then turn to an examination of the specific ob- 
servations from which he derives the numerical parameters of his theory. 

On the average Venus completes its longitudinal revolution, or circuit 
eastward about the zodiac, in the same time as the Sun does. Another way 
of stating this same fact is to say that the angular distance or elongation 
of Venus from the Sun never exceeds a fixed limit, about 48”; thus as the 
Sun proceeds eastward along the ecliptic at its nearly constant rate, averag- 
ing a little less than 1” per day, Venus overtakes it and then falls behind it 
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again, but is never more than 48” away from it. This irregularity in the 
motion of Venus may be referred to as the heliacal anomaly, because it 
relates to the Sun. Ptolemy’s mode of accounting for it is to assume 
that Venus moves round an epicycle, while the center of the epicycle 
moves eastward on a deferent circle with the mean angular speed of the 
Sun. Positions of Venus on the epicycle when it is at maximum elongation 
are such that the line of sight from the Earth to Venus is tangent to the 
epicycle. The direction of motion of Venus on the epicycle is determined 
by the observation that it takes Venus more time (indeed about three 
times more time) to pass from a greatest western elongation (when it is a 
morning star) to a greatest eastern elongation (when it is an evening star), 
than to pass in the reverse direction, from a greatest eastern to a greatest 
western elongation. This fact shows that Venus as it would be observed 
from the ecliptic’s north pole is moving counterclockwise on its epicycle. 
Ptolemy finds the average time for completion of one cycle of heliacal 
anomaly (from greatest eastern elongation, say, back to greatest eastern 
elongation again) to be very nearly 8/5 of a year or 584 days. 

Besides the heliacal anomaly, there is another irregularity, the zodiacal 
anomaly. This may be characterized in general terms as consisting in the 
fact that the greatest western and eastern elongations of Venus have diffe- 
rent values in different parts of the zodiac. Ptolemy measures the elonga- 
tions from the “Mean Sun” rather than from the “True and Apparent 
Sun”, the Mean Sun being a point imagined as moving uniformly along 
the ecliptic with the average rate of the Sun. The position of the Mean Sun 
coincides with that of the True Sun when the latter is at apogee or perigee, 
and differs from the latter at other times; the maximum difference, 2”23’ 
according to Ptolemy, occurs when the Sun is about midway between 
apogze and perigee. In terms of elongations from the Mean Sun, the zo- 
diacal anomaly as Ptolemy believes it to be has the following features: 
(a) For any given position of the Mean Sun in the zodiac, there is one 
definite recurrent greatest western elongation, and one definite recurrent 
greatest eastern elongation, these two elongations not being in general 
equal to one another. (b) At two positions of the Mean Sun, 180” apart, 
the two elongations are equal. (c) The sum of the greatest western and the 
greatest eastern elongations is a maximum for one and only one position 
of the Mean Sun in the zodiac, and on either side of that point becomes 
progressively less until it is a minimum at the opposite part of the zodiac. 
The two positions for the maximum and minimum sums are the same as 
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the two positions mentioned in (b) above, where western and eastern 
elongations are equal. It is a peculiar feature of the anomaly that the 
largest maximum elongation does not occur where the largest sum of 
elongations occurs, but rather at two symmetrically placed positions on 
either side. A similar statement can be made with regard to the smallest 
maximum elongation. 

Given the Ptolemaic account of the heliacal anomaly, the variation in 
maximum elongations from one point to another of the zodiac, or zodiacal 
anomaly, suggests that the Earth is not at the center of the deferent circIe 
but rather off-center; for on this assumption the distance between the 
Earth and the epicycle will vary and as a consequence the angle between 
the tangents drawn from the Earth to the epicycle will vary, as required 
by phenomenon (c) above. The first requisite for quantifying the theory is 
then to determine the direction of the line of apsides, or line through the 
Earth and the center of the deferent. Ptolemy does this by seeking and 
finding two positions of the Mean Sun such that Venus's greatest eastern 
elongation from one of them is equal to her greatest western elongation 
from the other; on the assumption of symmetry, the line of apsides should 
pass midway between the two positions. Ptolemy's result from two pairs 
of observations is that the line of apsides points toward 25' Scorpion and 
25" Bull. But how accurate is this result? 

Using orbital elements computed by linear extrapolation for A.D. 140 
from modern values,~~ one finds the perigee of the Earth's orbit at 71'0' 
and its eccentricity 0.01749; the perigee of Venus's orbit at 105'23.4', and 
its eccentricity 0.007698, or 0.005682 in terms of the Earth's mean solar 
distance taken as unity, where Venus's mean solar distance is 0.72333. 
The inclination of Venus's orbit to the ecliptic, about 3'22.3' in A.D. 140, 
affects the heliocentric longitudes of Venus by only 3', and the elongations 
by 6' at maximum, and will be neglected in the calculations that follow. 

The geometrical relations involved in determining where Ptolemy ought 
to have found the perigee and apogee of Venus are shown, with eccentrici- 
ties exaggerated, in Figure I:  S is the Sun, F the center of the Earth's 
orbit, and D the center of Venus's orbit; SF = 0.01749, SD = 0.005682, 
and angle FSD = 34'23.4'. Solution of the triangle shows angle SFD to 
be 13'42.4'; hence the line FD connecting the centers of the orbits points 
to 57'17.6'. The departure of the orbits from circularity is exceedingly 
slight-particularly so in the case of Venus. As a consequence the point P, 
on FD extended, is the point of the Earth's orbit that most nearly ap- 
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Fig. I 

proaches the orbit of Venus. Hence the greatest eastern and western 
elongations of Venus as observed from P yield a larger s u m  than do the 
greatest elongations observed from any other point of the Earth’s orbit. 

In another respect, however, the point P differs from the perigee describ- 
ed in Ptolemaic theory: the greatest eastern and western elongations of 
Venus from the Mean Sun, as observed from P, are not equal. With an 
error not exceeding about 16” of arc, the point M on the line of apsides 
of the Earth’s orbit, located so that SM is twice SF, may be used as a 
Ptolemaic-style equant point; to this approximation it represents the 
Mean Sun. But M is not on the line of centers FD; its distance from that 
line is such as to subtend at A or P an angle of about 15‘. It follows that 
the greatest western elongation observed from P should exceed the greatest 
eastern elongation by about twice 15’, or half a degree, while the greatest 
eastern elongation observed from A should exceed the greatest western 
elongation by about the same amount. The fact that Ptolemy’s theory 
implies almost exactly equal elongations for this position of the Earth 
must prepare us for considerable errors in his observations; thus we shall 
not be able to endorse the conclusion of a recent study, according to which 
the observations of maximum elongations used by Ptolemy have a preci- 
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sion of f 10.6'.16 At the same time, it is apparent that the assumption 
of symmetry in Ptolemy's theory is wrong, and could be shown to be so 
on the basis of determinations of maximum elongations accurate to within 
10' of arc. Were we to select a point on the Earth's orbit near P from 
which Venus's maximum elongations from the Mean Sun would appear 
equa1, it would have to be on the line through D and M, and the longitude 
of the position would be found to be about 65'5.5'. 

The two pairs of observations used by Ptolemy in Ahagest  X, 1 to 
determine the position of perigee and apogee are compared in the follow- 
ing table with the corresponding numbers derived from Tuckerman's 
ephemeris. 

Following Manitius and Czwalina,17 we take the year of the second 
observation to be 4 Antonine rather than the 14 Antonine given in Hei- 
berg's text of the Almagest; in fact, the position Ptolemy gives for the 

Table I 

Obscrvat ion Ptolemy Tuckerman A (P - T) 

21 -22 Pharmouthi. 
16 Hadrian = 8 March 
132 (evening) 
Longitude of Venus.. ...... 
Longitude of Mean Sun.. ... 
Elongation. ............... 
11 -12 Thoth, 4 Antonine 
= 30 July 140 (morning) 
Longitude of Venus.. . . . . . .  
Longitude of Mean Sun.. ... 

21 -22 Athyr, 12 Hadrian 
= 12 October 127 (morning) 
Longitude of Venus.. ...... 
Longitude of Mean Sun.. ... 
Elongation ................ 
9-10 Mechir, 21 Hadrian 
= December 136 (evening) 
Longitude of Venus. . . . . . . .  
Longitude of Mean Sun.. ... 

Elongation ................ 

Elongation. ............... 

3 1'30' 
344'15' 
47"15' 

78"30' 
125"45' 
47'1 5' 

1 5O020' 
197'52' 
47'32' 

3 19'36' 
272" 4' 
47'32' 

33" 0' 
345"22' 
47"37' 

80"34' 
126"46' 
46'12' 

I 51 *45' 
199' 3' 
47'18' 

320" 3' 
273'1 0' 
46'53' 

-1'30' 
-1" 7' 
-0O22' 

-2" 4' 
-1' 1' 
+ l o  3' 

- l"25' 
- l o l l '  
+0'14' 

-0"27' 
-1" 6' 
+0°39' 
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Mean Sun at the time of the second observation is derivable by way of 
his tables of the Sun’s regular movement for the morning of 1 1 - 12 Thoth, 
4 Antonine, but is incompatible with the morning of 11 - 12 Thoth, 14 
Antonine. The combination of Mean Sun positions and planetary posi- 
tions compared with the Tuckerman ephemeris suffices to fix the dates 
with little possibility of error. The longitudes of Venus have been derived 
from Tuckerman’s ephemeris by fourth-order Everett interpolation, then 
rounded to minutes; the expected tabular and rounding errors do not 
exceed 3’ or 4’. The longitudes of the Mean Sun have been obtained by 
first calculating the position of the true Sun by linear interpolation from 
the Tuckerman tables, then applying an equation of center computed on 
the assumption of point M in Figure I as an equant point; the tabular and 
rounding errors should not exceed 2’ or 3‘. In the cases of both Venus and 
the Sun, a further error must be allowed for, since the exact time of ob- 
servation is uncertain by about two hours; however, any error from this 
source, being about equal for the two bodies, will have a negligible effect 
on our value for the elongation. 

Ptolemy’s longitudes for the Mean Sun, it will be noted, are regularly 
too small by a little over a degree. This is an expected result, correlating 
with the famous or infamous errors in Ptolemy’s equinox observations or 
pseudo-observations, and with his all-too-low estimate of the amount of 
precession since the time of Hipparchus.18 Because of the displacement in 
Rolemy’s position for the spring equinox, it is to be expected that longi- 
tudes of celestial objects given in the Almugest for the period of Theon’s 
and Ptolemy’s observations will be too small by more than a degree on 
the average; Peters and Knobel have found the best epoch for Ptolemy’s 
catalogue of zodiacal stars to be A.D. 58, so that by A.D. 138, the epoch 
Ptolemy supposes for the catalogue, the longitudes of the stars are on the 
average too small by 66.5I.19 Thus a fair comparison between the Ptole- 
maic longitudes and those derived from the Tuckerman ephemeris de- 
mands that we add this amount to the Ptolemaic longitudes or subtract 
it from the Tuckerman figures. The errors in the Ptolemaic elongations 
remain, of course, unchanged; and it is evident that they make elongations 
to be equal that in fact differ by 1’25‘ in the case of the first pair of observa- 
tions, and by 25‘ in the case of the second pair. 

Ptolemy’s result for the longitude of the apogee, 55’, differs from the 
value we have obtained from modem parameters, 57’18‘, by only 2”18’, 
or by the even smaller amount 1’12’ once the adjustment for Ptolemy’s 
displaced equinox is made. The approximation to the positions where 
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the maximum elongations have the least and greatest sums is so good that 
one may be reluctant to regard the result as an accident. The fact remains 
that Ptolemy's method is aimed at locating the positions, not where the 
sums of the opposite maximum elongations are greatest and least, but 
where these opposite maximum elongations are equal. In this respect 
Ptolemy misses the mark by about 9", the correct position being some 64" 
east of the Ptolemaic equinox, or at longitude 65'5.5' as previously stated. 
Also, in the case of all four observations, Ptolemy appears to have missed 
the times of maximum elongation. Since at maximum elongation the 
planet and the Sun progress eastward at the same rate, the varying rates 
of the two bodies as derived from Tuckerman's ephemeris can be com- 
pared to find the approximate times of maximum elongation. All four of 
the Ptolemaic observations prove to be too late by two or three weeks. 
The discrepancies between the Ptolemaic elongations and those derived 
from Tuckerman's tables lead one to echo Delambre's surprise on seeing 
the opposite elongations, calculated from observations that were made 
without instruments by rough estimations of distances from stars, turn 
out "si parfaitement Cgales".20 

Ptolemy's next step is to obtain a value for the maximum elongation 
of Venus when the Mean Sun is at longitude 55" (apogee), and also a 
value for the maximum elongation when the Mean Sun is at longitude 
55" + 180" = 235" (perigee). These data are then used to compute the 
eccentricity of the deferent of Venus, and the relative sizes of epicycle and 
deferent. The two Ptolemaic observations are compared with the longi- 
tudes and elongations derived from Tuckerman's ephemeris in Table 11: 

Table I1 

Observation Ptolemy Tuckerman A ( P - 7 7  

1. 2 - 3 Epiphi. 13 Hadrian 
= 20 May 129 (morning) 
Longitude of Venus. . . . . . . . 10'36' 12' 2' -1'26' 
Longitude of Mean Sun.. . . . 55'24' 56'26' -1' 2' 
Elongation. . . . . . . . . . . . . . . . 

= 18 Nov. 136 (evening) 
Longitude of Venus.. . . . . . . 282'50' 282'17' +0'33' 

Elongation . . . . . . . . . . . . . . . . 45'35' +1'45' 

44"48' 44'24' +0"24' 

2. 2-3 Tybi. 21 Hadrian 

Longitude of Mean Sun.. . . . 235'30' 236'42' -1'12' 
47"20' 
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In the case of the first of these observations, comparison between the 
rates of Venus and the Sun in the Tuckerman ephemeris shows that the 
maximum elongation occurred before 20 May 129, and in fact on the 
morning of 2 May 129 when the Mean Sun was at longitude 38'46', the 
western elongation of Venus then being 4 4 O 4 9 ' .  That this result differs 
by only 1' from Ptolemy's value appears to be merely coincidental. In 
Figure I, the point of observation when the Mean Sun is in 38'46' is 
some 18' or 19' clockwise from point A on the Earth's orbit, and it is 
apparent that the line from this position of the Earth through D, the 
center of Venus's orbit, passes considerably to the left of point M, or 
the Mean Sun, so that the greatest western elongation will be considerably 
less than the greatest eastern elongation. In order to obtain good values 
for the maximum elongations as they would be seen from point A, one 
may proceed by the following algebraic and trigonometric steps: first 
compute the coordinates of the Earth's position with respect to D as 
origin and the major axis of Venus's ellipse as X-axis; next determine the 
points of tangmcy on Venus's ellipse, using equations for the tangents 
through the Earth's position; finally determine the slopes of the tangents 
and their inclinations to the line from the Earth through M. Carrying out 
this calculation for a position of the Earth such that the longitude of the 
Mean Sun was 56'35', we obtained the following results: for the greatest 
western elongation 45'18', and for the greatest eastern elongation 45'48'. 
The 30' difference between these elongations, it has already been noted, 
is predictable from the displacement of M to one side of the line of centers. 
The mean of the two elongations is 45'33', differing by 45' from Ptolemy's 
value. 

In the case of the second observation, comparison of the rates of Venus 
and the Sun in the Tuckerman ephemeris shows that the maximum elonga- 
tion occurred about 9 December, considerably after Ptolemy's date, and 
was equal to about 47'26', the longitude of the Mean Sun at this time 
being 257'23'. In order to obtain good values for the maximum elonga- 
tions as they would be seen from point P in Figure I, we have recourse 
once more to the path through the thicket of algebraic and trigonometric 
calculations. The results, for a position of the Earth such that the longitude 
of the Mean Sun is 236'35', are 47'24' for the greatest western elongation, 
and 46'53' for the greatest eastern elongation. The difference is 31', and 
is thus once again of the amount and in the direction expected from the 
displacement of the point M to the left of line PD. The mean of the two 
values is 47'8'. 
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Fig. I1 

As previously stated, Ptolemy uses his values 
tions at apogee and perigee to determine the 

for the maximum elonga- 
eccentricity and ratio of 

the epicycle to the deferent. The geometrical relations involved are shown 
in Figure 11. According to Ptolemy, angle AEF is 44"48', angle CEG is 
47"20', and the angIes at F and G are right since the epicycle is circular. 
Point D is the center of the deferent. By computation Ptolemy finds the 
eccentricity DE to be 0.021, and the radius of the epicycle to be 0.719, 
where the radius of the deferent is 1 .OOO. Were we to use instead of Ptole- 
my's values the mean values of the opposite maximum elongations derived 
previously from Figure I, namely 45"33' for angle AEF and 47'8' for 
angle CEG, we would find the eccentricity to be 0.0133 and the radius of 
the deferent to be 0.723. Ptolemy's error of 0.5 % in the radius of the epi- 
cycle can be regarded as negligible, but his value for the eccentricity is 
about 58% too large. The eccentricity DE in Figure I1 is essentially the 
same as the eccentricity DF in Figure I; and if DF is computed by tri- 
gonometric solution of triangle DFS in Figure I, the result is 0.01327, in 
agreement with the result just obtained from the mean elongations. Pto- 
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lemy's erroneous determination of this eccentricity will be one of the pre- 
misses leading to his conclusion that the eccentricity of the equant is 
exactly bisected by the eccentricity of the deferent. 

Earlier it was pointed out that the bisected eccentricity, which is a 
feature common to the Ptolemaic theories of Venus, Mars, Jupiter, and 
Saturn, emerges in a direct way from the appearances only in the case of 
Venus. In the case of the superior planets, Ptolemy introduces the bisected 
eccentricity by fiat. An eccentric deferent with bisected eccentricity is 
fitted to three observations of the planet when it is in opposition to the 
Sun; the method of fitting is simply that of trial and error, variations 
being made in the assumed direction of the line of apsides and in the 
assumed eccentricity until the theory represents the observations to a close 
enough approximation. There is no diiect test of the bisection. Even for 
the more fundamental fact that in the theories of these planets PtoIemy 
uses an equant point separate from the center of the deferent, the justifica- 
tion remains tacit and indirect: presumably theories with simple eccen- 
tricity and without the punctum aequuns had failed to "save the pheno- 
mena." We must now see how the equant point and bisected eccentricity 
emerge out of Ptolemy's data for the maximum elongations of Venus. 

In the preceding stage, Ptolemy determined the eccentricity DE of Fi- 
gure I1 (or DF of Figure I), and the ratio of epicycle to deferent, from 
maximum elongations of Venus obtained when the center of Venus's epi- 
cycle was at apogee and perigee of the deferent. A natural assumption 
would be that the center of the epicycle moves uniformly about D, the 
center of the deferent, and Ptolemy's next step can be imagined as a test 
of this assumption. If the epicycle moves uniformly on the deferent, its 
angular speed about D must be exactly equal to the constant angular 
speed of the Mean Sun about E, the Earth. Therefore, since the epicycle 
is at perigee (C in Figure 11) when the longitude of the Mean Sun is 235", 
the epicycle should have moved 90" beyond perigee when the Mean Sun 
has arrived at longitude 235" + 90" = 325". Maximum eastern and west- 
em elongations of Venus from the Mean Sun at this longitude permit 
determination of the position of the epicycle's center on the deferent, and 
thus answer the question how far it has moved beyond perigee, whether 
90" or more or less. The answer turns out to be that it has moved more, 
so that D is not a center about which the motion is unif'orm. The observa- 
tions Rolemy uses are compared with longitudes and elongations derived 
from Tuckerman's ephemeris in Table 111: 



The Inner Planets and the Kephrian Revolution 

Table 111. 

219 

Observation Ptolemy Tuckerman d ( P - l - l  

2-3 Pharmouthi, 18 Hadrian 
= 18 Feb. 134 (morning) 
Longitude of Venus. ....... 281'55' 282" 5' -0"lO' 
Longitude of Mean Sun.. ... 325"30' 326'37' -1" 7' 
Elongation. ............... 43"35' 44"32' -0°57' 

4-5 Pharmouthi. 3, Antonine 
= 18 Feb. 140 (evening) 
Longitude of Venus. ....... 13'50' 14"39' -0'49' 
Longitude of Mean Sun.. ... 325"30' 326"40' -1"lO' 
Elongation. ............... 48'20' 47"59' +0"21' 

In both observations Ptolemy appears to have hit on the time of maxi- 
mum elongation with little error. In the case of the first observation one 
can show from Tuckerman's ephemeris that the maximum elongation 
occurred one day earlier thanptolemy's date, but the differenceinelongation 
produced by the lapse of this one day is 1' of arc. In the case of the second 
observation, a shift of one day either way from Ptolemy's date decreases 
the elongation. Both observations were made by measuring, presumably 
by means of an instrument, relatively large angles from fixed stars, in the 
first case an angle over 59" from Antares and in the second case an angle 
over 28" from Aldebaran. The error in Ptolemy's longitudes for both 
these stars is about l"12' in A.D. 138,*1 and so is very nearly the same as 
the error in Ptolemy's equinox and Mean Sun positions. The errors in 
Ptolemy's latitudes for these stars, namely + 20' for Antares and + 27' 
for Aldebaran, are insufficient to account for the fact that Ptolemy's 
values for the elongations turn out to be as largely in error as they are. 
The errors in elongation are such, it will become immediately apparent, 
that they exaggerate the eccentricity of the equant. 

The geometry required to determine the position of the epicycle when 
the Mean Sun is at 325"30' is shown in Figure 111. Here HQ has been 
constructed through H perpendicular to AC. Angles FEM and GEM 
are the greatest eastern and western elongations, respectively, from the 
Mean Sun, M. Angles FEH and QHE can be determined from the maxi- 
mum elongations, for FEH is half their sum, and QHE is half their dif- 
ference, With the first of these angles and the value 0.719 obtained earlier 
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for the radius of the epicycle, one can calculate the length of EH. With the 
second angle and EH one can then compute QE. Ptolemy gives as his 
result exactly double the value found earlier for DE; in decimal form, 
QE = 0.0416 and DE = 0.0208. 

If instead of Ptolemy’s elongations one used for this computation the 
elongations obtained from the Tuckerman ephemeris, assuming also the 
more correct value 0.72333 for the epicycle’s radius, the result would be 
0.03014. In Figure I this is the distance DX, where X has been located by 
dropping a perpendicular from M, the equant point, onto the line DF 
extended. From an earlier calculation we know that DF is 0.01327; thus 
FX should be 0.03014-0.01327 = 0.01686. The same length can be com- 
puted more accurately in another way: FX is given by FM cos 13”42.4’, 
where FM is equal to the eccentricity of the Earth’s orbit (0.01749), 
whence FX = 0.01699. The small discrepancy between the two results is 
attributable to the fact that in the calculation from the elongations the 
line from the Earth to the Mean Sun is not exactly at right angles to the 
line of centers, or DF extended, this fact being in turn due to the lack of 
coincidence of Ptolemy’s apogee and the longitude of point P in Figure I. 

Given the considerable errors in the observations Ptolemy employs, 
it is difficult to avoid the uncomfortable suspicion that the observational 
results have been “adjusted” to some extent, to obtain a neatly symmetrical 
theory with exactly bisected eccentricity. Nevertheless, the question re- 
mains whether Ptolemy, in introducing the equant point and in placing it 
yonder side of the center of the deferent from the Earth, with the distance 
between equant point and center being of the same order of magnitude 
as the distance between center and the Earth, is not conveying a genuine 
empirical discovery of capital importance. The crucial datum in the deter- 
mination of the eccentricity of the equant (EQ in Figure 111) is the difeer- 
ence of the two maximum elongations, eastern and western, from the 
Mean Sun when the latter is 90” from the perigee or apogee of Venus’s 
deferent. In order that the point Q in Figure 111 should be found identical 
with the point D, given our earlier determination of DE as 0.01327 and 
assuming observations accurate to within 10‘ of arc, it would be necessary 
that the difference of elongations turn out to be l”31‘ f 20‘. Or if Ptole- 
my’s prior determination of DE as 0.0208 is taken as starting point, the 
difference of elongations would have to be 2’23‘. The difference Ptolemy 
claims to have found is 4’45‘; the difference he should have found is 
3’26’; both numbers being considerably larger than the numbers that 
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A 

C 

Fig. 111 

would be required to justify making Q identical with D. It is plausible to 
suppose that the maximum elongations Ptolemy reports are not the only 
ones he knew, and that he found himself confronted with a general pheno- 
menon, namely, that for more than one position of the Mean Sun in be- 
tween perigee and apogee, the difference of the eastern and western maxi- 
mum elongations had proved larger than a theory with equant point and 
center of deferent coinciding could allow for. If this supposition is correct, 
then the principle of the equant or some device having the same effect 
would have been forced upon him; and given his earlier steps and the 
character of the phenomenon, one can easily imagine that the equant 
would present itself as the most obviously available solution of the prob- 
lem. The exact bisection in the Ptolemaic theory, on the other hand, looks 
like one more piece of evidence pointing to a penchant for tidiness and 
symmetry, a tendency that goes even to the point of adjusting the observa- 
tional data so that they would yield a neat and simple theory. Perhaps 
there is something to be said for using this procedure-although not for 
concealing one’s use of it-if the raw observations were as confusing as 
we may justly suspect them to have been. That they contained consider- 
able error has been indicated by comparisons between Ptolemy’s reported 
results and the Tuckerman tables; that the problem to be solved does not 
admit of a strictly symmetrical solution has also been indicated. The pre- 
cise bisection was better by far than its inventor could have had any valid 
justification for supposing; better in fact than he could have known even 
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Fig. IV 

with very accurate observations, since it is inapplicable to the Ptolemaic 
deferent of Venus. 

What the bisection is strictly applicable to, with an error not exceeding 
16”, is the motion of the Earth or Sun; but before this fact can be discerned 
in the observational data for Venus, the motions that are conflated in the 
Ptolemaic theory have to be disentangled. It is to Copernicus that one 
first looks, with the expectation that he will have done this, or at least 
that he will have wanted to do it. Certainly a major motive for his reforma- 
tion of planetary theory was to eliminate the unexplained coincidence in 
Ptolemaic theory that the inner planets have longitudinal periods exactly 
equal to the Sun’s year; and it would appear but a fiuther step in the 
same direction to demand that the motions of the inner planets be freed 
from all motions having the Earth’s or Sun’s period. His theory for the 
longitudes of Venus is shown in Figure IV. Here the Earth’s orbit is circle 
ABG, with center C; Venus’s orbit is circle EHF, and its center moves 
counter clockwise about the small hypocycle having the center N and 
radius ND, the angular rate being double that of the Earth, and the timing 
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such that the center is at M when the Earth is a A or B, but at D when the 
Earth is a quadrant’s distance from apogee or perigee as at G. Copernicus 
accepts Ptolemy’s numerical parameters as exact, but finds the distance 
CD (essentially the eccentricity of the Ptolemaic equant, or DX in Figure I) 
to have decreased since Ptolemy’s time from 0.0416 to 0.0350. Thus the 
eccentricity CD is no longer bisected by the point M. Copernicus considers 
this decrease to be due to a periodic motion of the center of the Earth‘s 
orbit which has brought it closer to the Sun; he claims to have detected a 
similarly explicable diminution in the eccentricity of the orbit of Mars. 
In fact, small decreases in the eccentricities of the orbits of both the Earth 
and Venus had reduced CD from 0.03026 in Ptolemy’s time to 0.02935 
in A.D. 1530. Thus the eccentricity given by Copernicus is somewhat less 
in error than the Ptolemaic value. The more fundamental fact is that 
Copernicus retains the essential structure of the Ptolemaic theory. He 
assumes symmetry about the line of centers; and having transformed 
Ptolemy’s solar theory, with its uniform motion on an eccentric circle, 
into a theory of identical form for the Earth, he is forced to accommodate 
the equant point in Ptolemy’s theory of Venus by the introduction of the 
strange little hypocycle. In accepting the Ptolemaic observations as pre- 
cisely accurate, and in following the Ptolemaic practice of using the Mean 
Sun rather than the true Sun as point of reference, Copernicus found 
himself‘ forced into a certain opportunism of explanation, similar to that 
which Ptolemy confesses to in his introduction to the theory of the lati- 
tudes (Ahagest  XIII, 2). The decision for the hypocycle rather than for a 
mere linear oscillation (such as Copernicus uses in his theory of the lati- 
tudes), and the decision for counterclockwise rather than clockwise mo- 
tion on the hypocycle, can hardly have been based on clear observational 
evidence; they constituted a highly arbitrary solution of a difficulty, a 
special device that was not and could not be (in the then state of the 
observational art) tested in all its consequences. 

It is Kepler who finally teases apart the entangled causes, and arrives 
at a theory for Venus free from such narrowly arbitrary postulations. The 
Keplerian theory of Venus is exactly like the Keplerian theories of the 
other circumsolar planets: there is an eccentric elliptical orbit, with the 
Sun occupying one focus, and the planet moves in accordance with Kep- 
ler’s area rule. Kepler finds the eccentricity to be 0.00692, and the longi- 
tude of the perigee in A.D. 1600 to be 121’14’; extrapolating from modern 
parameters we would expect these numbers to be 0.00697 and 125”55‘ 
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respectively. The error of 4"41' in the perigee is to be expected as a result 
of the excessive value Kepler gave to the eccentricity of the Earth's orbit, 
0.01800 instead of 0.01688 (in effect, the lengthening of SF in Figure I 
pushes S away from F and rotates the line SD clockwise). Kepler's orbital 
elements will, of course, be subject to later refinement. One must note, 
on the other hand, that they were not originally arrived at by a process 
that can be accurately described as the refinement of an earlier theory; 
the essential step was rather the introduction of a new pattern, borrowed 
from the planetary theory to which Kepler had been led by his studies of 
Mars. Gone is the assumption of symmetry about the line of centers; 
gone the intrusion into the theory of Venus of motions synchronous with 
the Earth's motion. Kepler separates what belongs to Venus and what 
to the Earth in a new way; the theory of each planet is symmetrical about 
a line of apsides passing through the Sun, and each theory describes the 
dynamic relation of a planet to the Sun. At the root of this as of other 
phases of the Keplerian revolution is Kepler's hunch concerning the causal 
efficacy of the Sun. A new way of seeing the world as connected system is 
operative here, one that was utterly alien to the minds of such contem- 
porary astronomers as Lansberg and Longomontanus. The new theory of 
Venus was not merely an inductive outcome of the available observations 
of Venus, and indeed is not imaginable as such; the transits of the planet 
across the face of the Sun, which can alone provide direct information 
as to its heliocentric longitudes, are too infrequent (the first such transit 
was observed by Horrox in 1639). Here theory had outrun fact. 

Mercury 

As previously indicated, the phenomena of Mercury are different from 
those of Venus, and more complicated. Kepler mentions one difference 
in his letter to Magini of June 1601, and again in his letter to Maestlin of 
10/20 December 1601, when he says that, whereas the apogee of Venus 
and that of the Sun are almost conjoined, the apogee of Mercury is closer 
to the perigee than to the apogee of the Sun.22 We can put the matter in 
perhaps more graspable form by saying that the center of Venus's orbit 
is closer to the Sun, and the center of Mercury's orbit is farther from the 
Sun, than the center of the Earth's orbit; all three centers being toward 
the same side of the Sun, confined within an angle of about 60". It will be 
seen shortly that this arrangement brings it about that in the Ptolemaic 
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theory of Mercury the equant point is closer than the center of the deferent 
to the Earth. 

A further complication in the Ptolemaic theory arises from the addi- 
tional feature that the center of the deferent is made mobile, moving on a 
small circle in such a way as to bring the epicycle of Mercury, when it is 
in between apogee and the opposite point of the deferent, closer to the 
Earth than a fixed deferent would permit. In fact, the epicycle is brought 
closest to the Earth not at the point 180" from apogee but at two points 
just about 120" to either side-the double perigee of Ptolemaic and 
Copernican theory. Now at the time of his letters to Magini and Maestlin 
in 1601, Kepler believed the orbits to be perfectly circular. If the orbits 
are postulated to be circular, and if the simplifying assumption is made 
that they occupy a single plane-the 7" inclination of Mercury's orbit to 
the plane of the ecliptic thereby being ignored-it turns out that the alleged 
phenomenon of the double perigee of Mercury is underivable. It is there- 
fore understandable that Kepler, while remaining doubtful as to the fact 
of the phenomenon, considered the possibility that the inclination of 
Mercury's orbit might account for this feature of the Ptolemaic and Coper- 
nican theories.23 In fact, the boreal node of Mercury is fairly close to the 
perigee of Mercury; in A.D. 140 the difference in the longitudes of the two 
points was 22" (it has since increased to about 29"). This means that the 
projection of the orbit onto the ecliptic is narrower in the middle longi- 
tudes between aphelion and perihelion than it would otherwise be. Con- 
sequently, the sums of opposite maximum elongations, for positions of 
the Mean Sun near apogee or the opposite point of the ecliptic, are reduced 
from what they would be if the inclination were zero, relative to the sums 
for intermediate points. The shortening of the radius vector by projection 
onto the ecliptic, or curtatio as Kepler called it, leads to a reduction of 
maximum elongations of about 11 ' or 12' at most. 

An effect of the same character but of greater magnitude is produced 
by the oval shape of the orbit, which reduces the elongations in the 
middle longitudes by as much as half a degree. From the moment that 
Kepler knew the Martian orbit to be oval, he assumed the Mercurial 
orbit to be oval as well. His recognition that the ellipticity could imply a 
double perigee, and his simultaneous doubt of the truth of the latter, is 
expressed in a letter to David Fabricius of October 1605; he is responding 
to Fabricius's proposal of a theory for the latitudes of Mercury: 

IS CENTAURUS, VOL. XVII 
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Here you call me into your labyrinths of Mercury and Venus. It is not permitted to 
follow: you will weary yourself without reason, assuming the Ptolemaic opinions, so 
many of which are found to be false. To me it suffices concerning Venus and Mercury 
to know from observations that the inclinations of the planes (which are epicycles for 
Ptolemy) to the plane of the ecliptic arc constant . . . The small libratory circles . . . fall 
of their own accord, once the eccentricity of the Earth is bisected. From the epicycles 
are made eccentrics, each with its equant . . . The triangufatio of Mercury [Kepler is 
referring to the three Ptolemaic apses, namely one apogee and two perigees 120” apart] 
is suspect, for the whole of the observed quantity that persuaded Ptolemy of the triangu- 
latio, and something more, is attributable to the uncertainty of the observation. And 
yet if from the epicycle an eccentric is made, the eccentricity will be large, and the oval- 
ness very markeddauses which could lead Ptolemy to the triangulatio. I would add 
also this, concerning which I frequently ask. why today are not the sums of the elonga- 
tions equal to the ancient values?. . .14 

Is Kepler right to suppose that the observational error in the data 
Ptolemy uses exceeds the difference that is put forward as justifying the 
double perigee? Is there in fact a double perigee- or more exactly, are 
there phenomena that would lead Ptolemy with his assumptions to estab- 
lish a double perigee, as Kepler seems to suggest in the just-quoted passage 
and as he comes to assert in the Epitome ustronomiue Copernicunue?~~ 
Is Kepler right when, in the same passage of the Epitome, he suggests 
that Ptolemy’s observational data were “adjusted” to yield a symmetrical 
theory? In what way, and to what extent, does the Ptolemaic artifice 
mirror fact? And Copernicus’s reformulation of the Ptolemaic theory: 
does it improve matters? In answering these questions, we can bring into 
focus the advance and the innovation in the Keplerian instauratio. 

As with Venus, so with Mercury, the fundamental Ptolemaic data are 
maximum elongations from the Mean Sun. Mercury, like Venus, has 
both heliacal and zodiacal anomalies. Once more, Ptolemy accounts for 
the heliacal anomaly by counterclockwise motion on an epicycle. The 
zodiacal anomaly, however, requires variable eccentricity of the deferent 
as well as an equant point. The initial problem in setting up all the Ptole- 
maic planetary theories is to separate the two anomalies, and following 
his procedure in the case of Venus, Ptolemy does this for Mercury by 
assuming symmetry and seeking to locate a line of apsides. The pairs of 
opposite maximum elongations that Ptolemy uses for this purpose are 
compared with the results of computation from the Tuckerman ephemeris 
in Table IV (the Tuckerman positions of Mercury are computed by fourth 
order Everett interpolation; the positions of the Mean Sun are computed 
as previously described in the case of Venus). 
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Table 1V 
~ ~ 

Observation Ptolcmy Tuckerman A ( P - l J  

16-17 Phamenoth, 
16 Hadrian - 2 Feb. 
132 (evening) 
Longitude of Mercury. ..... 
Longitude of Mean Sun.. ... 

18-19 Epiphi, 18 Hadrian 
= 4 June 134 (morning) 
Longitude of Mercury. . . . . .  
Longitude of Mean Sun.. ... 
Elongation ................ 
20-21 Epiphi, 1 Antonine 
= 4 June 138 (evening) 
Longitude of Mercury. ..... 
Longitude of Mean Sun.. ... 

18 - 19 Phamenoth, 
4 Antonine = 2 Feb. 
141 (morning) 
Longitude of Mercury. ..... 
Longitude of Mean Sun.. ... 
Elongation ................ 

Elongation ................ 

Elongation ................ 

331' 0' 
309"45' 
21'1 5' 

48"45 ' 
70" 0' 
21"15' 

97" 0' 
70"30' 
26'30' 

283"30' 
310" 0' 
26-30' 

330'36' 
310"50' 

19"46' 

51"14' 
71' 7' 
19'53' 

97"18' 
71'39' 
25'39' 

285'54' 
311" 9' 
tS"15' 

+0°24' 
-1" 5' 
+l"29' 

-2'29' 
- lo  7' 
+ 1022' 

- 0 O 1 8 '  
- l o  9' 
+0"5I' 

-2'24' 
-1" 9' 
f l"l5'  

Refraction is no doubt partly responsible for Ptolemy's exaggerated 
elongations, but it is not the only source of error in these observations. 
Comparison of rates of Mercury and the Sun in the Tuckerman ephemeris 
indicates that the second and third observations listed above were too 
late for the maximum elongation, the second by about five days and the 
third by about four days. The first observation was about a day and a 
half late, and the fourth was made at very nearly the right time. The four 
maximum elongations, deduced from the Tuckerman ephemeris for the 
times thus found, are: 19"51', 21"19', 25"54', and 25"19'. The first two 
numbers, which accbrding to Ptolemy should be equal, differ roughly by a 
degree and a half; the third and the fourth, which also should be equal, 
differ by about half a degree. An excursion into geometry will now con- 
firm these results, and show that the line of symmetry Ptolemy claims to 
have found does not exist. 
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Figure V shows the orbits of Mercury and the Earth: S is the Sun, F 
the center of the Earth's orbit, M the equant point for the Earth's motion 
(and thus the second focus of the Earth's elliptical path), and D the center 
of Mercury's orbit. The eccentricities are exaggerated to show the geo- 
metry at the center; hence the orbits are made to appear less concentric 
than they are in fact. The eccentricity of the orbit of Mercury, computed 
by extrapolation from present-day values, is found to have been 0.205265 
in A.D. 140; if the mean radius of the Earth's orbit is taken as unity, so 
that the mean radius of Mercury's orbit becomes 0.387098, the eccentricity 
of Mercury becomes 0.0794577; and when this length is projected onto 
the ecliptic through the angle of inclination of the orbit (6'58' in A.D. 
140), the final result is a value for SD in the diagram, namely 0.078868. 
The eccentricity of the Earth's orbit is taken, as earlier, to be 0.01749. 
Also as previously, we take the longitude of the Earth's perihelion in A.D. 
140 to be 71'0'. The longitude of Mercury's perihelion is calculated to be 
48"33'. 

Using these numbers and the analytic geometry of the ellipse, we can 
compute maximum eastern and western elongations for any stipulated 
longitude of the Mean Sun, just as in the case of Venus.26 By such compu- 
tation, the four maximum elongations corresponding to the Mean Sun 
positions stipulated in Table IV are found to be: 19'51', 21'39'' 25"43', 
25'19'. The second and third of these differ from the maximum elonga- 
tions obtained previously from the Tuckerman ephemeris for the reason 
that the Mean Sun positions are significantly different in the two cases. 
The new figures confirm the conclusion that Ptolemy's observations fail 
to locate an axis of symmetry: the opposite maximum elongations are 
unequal. Thus Ptolemy's apogee of the deferent, located at about 11 ' by 
averaging the two positions of the Mean Sun in observations # 1 to # 4 
of Table IV, is not such that the maximum eastern and western elonga- 
tions are there equal. The geometry shows that, for the Mean Sun at lon- 
gitude 11"5', the maximum eastern elongatcon is 22'27', the maximum 
western elongation 24'59'. 

For what position of the Mean Sun near Ptolemy's apogee will the op- 
posite maximum elongations be equal? Insofar as the orbit of Mercury 
approaches circularity, we could expect this position to be on the line in 
Figure V that passes through D, the center of Mercury's orbit, and M, 
the equant point for the Earth's motion. By solution of triangle SDM, 
angle SDM is found to be 16"1', whence the proposed longitude of the 
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Mean Sun is 48"33' - 16'1' = 32'32'. From this position the maximum 
eastern elongation is found to be 23"45', and the maximum western elon- 
gation 23"55'; the 10' difference is a result of the ellipticity of the orbit 
(the crtrtatio here decreases, rather than increases, the difference). By the 
time the Mean Sun has moved on to a longitude of 40°, the steadily in- 
creasing maximum eastern elongation has exceeded the maximum western 
elongation by about 54'. The opposite maximum elongations are equal, 
we may estimate, when the Mean Sun has a longitude of about 34". 
Rolemy's guess thus misses the mark by about 22". 

Rolemy's next step, as in the case of Venus, is to determine the eccen- 
tricity and relative size of Mercury's epicycle from observations of maxi- 
mum elongations when the Mean Sun is at apogee and the opposite point 
of the ecliptic. The two observations used, compared with the correspond- 
ing longitudes and elongations derived from Tuckerman's ephemeris, are 
given in the following table. 

Table V 

A (P - T) Observation Ptolemy Tuckerman 

14-15 Athyr, 19 Hadria197 
= 3 October 134 (morning) 
Longitude of Mercury. ..... 170"12' 1 70"45 ' -0"33' 
Longitude of Mean Sun.. ... I89"I 5' 190"23' -1" 8' 
Elongation . . . . . . . . . . . . . . . .  19" 3' 19'38' -0'35' 

19-20 Pachon. 19 Hadria47 
= 5 April 135  (evening) 
Longitude of Mercury. . . . . .  34'20' 34"25' -0" 5'  
Longitude of Mean Sun.. . . .  11" 5'  12'13' -1"  8' 
Elongation . . . . . . . . . . . . . . . .  23"lS' 22"12' + I "  3' 

Comparison of rates in the Tuckerman ephemeris indicates that Ptole- 
my has missed the time for maximum elongation, especially in the first 
observation but also in the second. In the case of the first observation, 
the maximum elongation appears to have occurred about four days ear- 
lier, on the morning of 29 September; the value of the elongation at that 
time was 20"15'. In the case of the second observation, the maximum 
elongation appears to have occurred about a day and a half earlier; the 
value of the elongation was then about 22'21'. Computations from the 
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gzometry of Figure V confirm the fact that the elongations calculated 
from the Tuckerman tables for the times given by Ptolemy are less than 
maximal: with the Mean Sun in 189”15’, the maximum western elonga- 
tion proves to be 20”16’, and with the Mean Sun in 12”19’, the maximum 
eastern elongation proves to be 22’27’. There is a further, serious diffi- 
culty. Since Ptolemy assumes symmetry about the line of apsides that he 
has established, he supposes that the maximum eastern and western elonga- 
tions when the Mean Sun is in 189”15‘ are equal, and similarly that the 
maximum eastern and western elongations when the Mean Sun is in 11 “5‘ 
are equal. But in each case the supposition is incorrect, as indicated in the 
following results computed from the geometry of Figure V: 

Fig. V 

It is the mean value in each case that informs us concerning the apparent 
size of the epicycle as “seen” from the Earth. Hence Ptolemy’s value for 
the first elongation is more than two degrees too small, and his value for 
the second elongation is about half a degree too small. 

Ptolemy’s diagram for computation of eccentricity and relative size of 
epicycle is reproduced in Figure VI. HIS results, translated into decimal 
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Fig. V1 

form, are that the eccentricity, FB/AF, is 0.095, and that the radius of the 
epicycle in relation to half of line AC, or CE/AF, is 0.357. If as basis of 
the computation the mean values from Table VI are used instead of 
Ptolemy's values, the results are: for the eccentricity, 0.0543, and for the 
radius of the epicycle, 0.3804. Ptolemy's value for the eccentricity is nearly 
75 % too high; his value for the radius of the epicycle about 6 % too low. 

Ptolemy's third step again parallels his procedure for Venus: he exam- 

Table VI 

Result Calculated 
Ptolemy from Figure V 

Mean Sun in 189'15' 
22" 3' Mean Value 

20'16' 
= 21" 9' I 

1 

Greatest eastern elongation. . . . . . . . . ...... 

Greatest western elongation . . . . . . . . 19' 3' 

Mean Sun in 12"19' 
22-27' Mean Value 

24'59' 
= 23"43' 

Greatest eastern elongation. . . . . . . . . 
Greatest western elongation. ~ . . . . . . 

23"15' 

...... 
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ines the maximum elongations when the Mean Sun is a quadrant's dist- 
ance from apogee, with the aim of locating the equant point on the line of 
apsides. The observations he uses are compared with the results of calcula- 
tion from the Tuckerman ephemeris in Table VII. 
The first observation, which is due to Theon, appears to have been 

made very near the time of maximum elongation; calculation from the 
geometry of Figure V, with the Mean Sun in 101'8', yields a maximum 
eastern elongation of 26'16', within 1' of the elongation derived from 
Tuckerman's ephemeris. In the case of the second observation, however, 
the maximum elongation occurred some three days after Ptolemy's date; 
from the Tuckerman ephemeris it appears to have been about 20'21'. 

Table VII 

Observation Ptolerny Tuckerman A (P - T) 

18-19 Mesore, 14 Hadrian 
= 4 July 130 (evening) 
Longitude of Mercury. ..... 126'20' 127"23 ' -1" 3' 
Longitude of Mean Sun..  ... 100" 5' 101" 8' -1" 3' 
Elongation. ............... 26"15' 26"15' 0" 0' 

20-21 Mesore, 2 Antonine28 
= 5 July 139 (morning) 
Longitude of Mercury. ..... 80" 5' 81'39' - l"34' 
Longitude of Mean Sun..  ... loo"20' I01 '27 ' -1" 7' 
Elongation. ............... 20°15' 19'48' + O"27 ' 

Calculation from the geometry of Figure V, with the Mean Sun in 101'8', 
yields a maximum western elongation of 20'25'. Ptolemy's result differs 
from this by only 10'. 

To determine the position of the equant point, Ptolemy uses the dia- 
gram reproduced in Figure VII. Here B is the Earth, the dashed line BM 
at right angles to AC is directed toward the Mean Sun, and the two angles 
KBM and MBL are the two elongations of Table VII. The reason why 
the center of the deferent is not placed on the line of apsides will become 
apparent at the next stage. It is assumed that the epicycle remains of the 
size determined at the preceding step. With these things given, Ptolemy 
shows that BG = 0.0474, or just half the eccentricity previously determin- 
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c 

Fig. VI1 

ed, 0.095. If in this computation we use instead of Ptolemy’s values the 
two elongations determined from the geometry of Figure V, namely 26’16’ 
and 20”25‘, along with the radius of the epicycle as previously determined, 
namely 0.3804, the result for BG is 0.0490, which is close to Ptolemy’s 
value but considerably more than half our previous value for the eccen- 
tricity, 0.0543. 

These results can be calculated in a more direct way from the geometry 
of Figure V. Here DX, the projection of DF onto the Ptolemaic line of 
apsides, should be and is in fact found trigonometrically to be equal to 
0.0543. DY, the projection of DM onto the Ptolemaic line of apsides, 
turns out to be 0.0453, something less than the value 0.0490 just obtained 
from elongations; the difference depends on the extreme sensitivity of the 
determination to the position of the Mean Sun, and on the fact that in 
the observations one is “viewing” not a circular epicycle but an elliptical 
orbit, and this from an angle oblique to the axis of the ellipse. In the 
determination of the eccentricity of the deferent, DX, the difficulty does 
not arise, since at both apogee and the point opposite the opposite elonga- 
tions are averaged, and the ellipticity then affects the results for the two 
positions in very nearly the same way. In any case, we have to conclude 
that Ptolemy’s neat bisection, which makes DY just half of DX, was 
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i: 

Fig. VIII 

obtained either by a prodigious stroke of luck or else by deliberate engi- 
neering, that is, suiting the observations to the theory rather than vice 
versa. 

In a general way, however, the Ptolemaic result informs us (in Ptole- 
maic terms) of an empirical truth: the eccentricity of the equant is less 
than the eccentricity of the deferent. This first major difference between 
the Ptolemaic theories of Mercury and Venus evidently arises from a 
marked difference in the distances between the centers of the orbits and 
the Sun: the distance from the center of Venus’s orbit to the Sun is only 
about one-third of the distance from the center of the Earth’s orbit to the 
Sun, while the latter distance is only some two-ninths of the distance 
from the center of Mercury’s orbit to the Sun. In each of the two theories 
the equant point is or should be a projection of the equant point of the 
Earth’s orbit (M in Figures I and V) onto the assumed line of apsides. 
Roughly, in the arrangement of these various points with respect to one 
another, the Ptolemaic theories reflect the way things were and are. 

One further, major difference between the Ptolemaic theories of Mer- 
cury and Venus remains to be examined: the fact that the center of Mer- 
cury’s deferent is not fixed like that of Venus, but is made to move clock- 
wise on a small circle with the angular speed of the Mean Sun. That some 
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such device is required by the data Ptolemy gives us can be deduced from 
the Ptolemaic elongations already recorded in Table VII, and the gzometry 
of Figure VII. According to Ptolemy, angle KBH in Figure VII is 23"15', 
and KH is 0.357; then BH = KH/sin 23'15' = 0.904. Now since Ptolemy 
h d s  BG = GF, where F is the midpoint of the line of apsides, it follows 
that FH is also equal to 0.904. But for a fixed center of the deferent we 
would expect this length to be equal to FA, that is, 1.OOO. 

Is the phenomenon genuine? We repeat the calculation using the values 
obtained geometrically from Figure V, namely KH = 0.3804, angle KBH 
= 23"20.5', BF = 0.0543, and BG = 0.0490. The result is that BH = 
0.9601, and FH = 0.9589. The effect is not as marked as Ptolemy claims, 
but it is nevertheless present. If an epicycle of fked size is to be assumed, 
it is not possible to employ a deferent of both fixed size and center. 
Ptolemy chooses to make the center mobile, moving it in such a way as 
to bring the epicycle closer to the Earth. On the other hand, when the 
Mean Sun is at 281", once more a quadrant's distance from apogee but 
now on the opposite side of the zodiac, this mechanism works in the 
wrong direction, bringing the epicycle about as much closer as it needs 
to be carried farther away. 

The peculiar mechanism that Ptolemy devises for Mercury is shown in 
Figure VIII. Here B is the Earth, G is the equant point, and D is the center 
of the deferent, moving on the small circle with center F and radius FD. 
As GH rotates counterclockwise at the rate of the Mean Sun, FD rotates 
clockwise at the same rate. DH is of constant length; if we hold to our 
earlier stipulation of AF as the unit of distance, and further set FD = e, 
then HD = 1 - e. According to Ptolemy's reported findings, as previously 
noted, BG = FG = e. Given these assumptions, it follows that the epi- 
cycle is brought closest to point F when angle AGH is precisely 
120" or 240". This is the reputed phenomenon of "Mercury twice perigee." 
Does it occur? 

If Mercury were to be well-behaved like Venus, exhibiting only a single 
perigee, we would expect to find this perigee 180" from apogee; that is, 
at a longitude of 11" for Ptolemy or a little more than 12' if correction is 
made for Ptolemy's misplaced equinox. With the Mean Sun at longitude 
12", then, we would expect the s u m  of Mercury's greatest eastern and 
western elongations to reach its largest value. According to Ptolemy, this 
sum is 46'30'; the geometry of Figure V, by contrast, implies that it is 
47'26'. For the two perigee positions of the Ptolemaic theory, the values 
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of the greatest eastern and western elongations as stated by Ptolemy have 
already been listed in Table IV. These values, together with their sums, 
are compared with the values for the same positions deduced from Figure 
V in Table VIII. 
In the case of both alleged perigees, the s u m  of opposite maximum elonga- 
tions as calculated from Figure V proves less than the s u m  calculated in 
the same way for the Mean Sun at longitude 12". The perigee asserted for 
longitude 310" is especially untenable. The only plausible explanation is 
that the two Ptolemaic perigees are artifacts of a theory. We can still ask: 
are there two perigees or perhaps even more, at different longitudes from 

Table VIII 

According Calculated 
to Ptolemy from Figure V A (P - C) 

First Perigee 
(Longitude of Mean Sun 
= 310" according to 
Ptolemy, 3 11" when 
corrected) 
Greatest eastern elongation. . 21'15' 19'51' + 1'24' 

Sum ...................... 47'45' 45'10' +2"35' 

Second Perigee 
(Longitude of Mean Sun 
= 70" according to 
Ptolemy. 71' when 
corrected) 
Greatest eastern elongation. . 26'30' 25"43' +0°47' 

Sum ...................... 47'45' 47'22' +O023' 

Greatest western elongation . 26'30' 25'19' +loll' 

Greatest western elongation . 21'15' 21'39' -0'24' 

those assigned by Ptolemy? As Kepler was aware, the ellipticity of the 
orbit of Mercury, and the reduction of the radius vector to the ecliptic, 
could conceivably lead to such a phenomenon. 

An answer to t h i s  question satisfactory for present purposes (we are 
concerned not with fine structure but with features detectible by means 
of observations good to within about 10' of arc) can be obtained by com- 
puting the sums of opposite maximum elongations for a series of positions 
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Fig. IX. Plot of Sums of Maximum Elongations of Mercury: Ptolemaic, Copernican, & 
Keplerian. 

around the zodiac, given the Keplerian orbits of Mercury and the Earth 
as shown in Figure V. The results are shown in the solid-line graph of 
Figure IX. A slight dip appears in the peak of the graph. It emerged only 
at the final stage of the calculations, with the introduction of the czututio; 
as it amounts to no more than 7' or 8', it will here be ignored. This dip 
aside, the graph presents but a single maximum. There is thus but one 
perigee. 

Figure IX also includes a graph of the predictions of the Ptolemaic 
theory. These predictions have been generated from the mechanism of 
Figure VIII by means of a series for the sine of the angle between BH and 
the tangent from B to the epicycle. The variable here is the distance be- 
tween the Earth B and the center H of the epicycle.29 

A third graph included in Figure IX shows the sums of greatest eastern 
and western elongations predicted from the Copernican theory. The Co- 
pernican mechanism can be explained with the assistance of Figure x. 
Just as in the case of Venus, Copernicus here eliminates the equant, in- 

16 CENTAURUS. VOL. XVII 
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Fig. X 

troducing a hypocycle to perform its function; in Figure X the center of 
the hypocycle is D, and its radius is DF. The center of Mercury’s orbit 
completes its journey round the hypocycle in precisely half the Earth’s 
year; it is at F when the Earth is at A or B, and at E when the Earth is at 
M or N, midway between A and B. This rotation, which is set up precisely 
in order to bring the center of Mercury’s orbit to the positions required 
by the Ptolemaic observations when the Earth is at A, M, B, and N, has 
additional effects. While the Earth is passing from A to N, the orbit of 
Mercury is moved to the left as well as down; while the Earth is passing 
from N to B, the orbit is moved to the right as well as up. As we have al- 
ready seen, the reported Ptolemaic observations require that, for a posi- 
tion of the Mean Sun (or Earth) midway between the two apses, the epi- 
cycle (or orbit) must be closer to the Earth than a fixed deferent permits- 
assuming the epicycle (or orbit) to be of constant size. In the Copernican 
scheme the Ptolemaic deferent is replaced by the fixed orbit of the Earth; 
in order to achieve the required result Copernicus therefore makes the 
orbit itself variable in size, its radius subject to a libratory decrement and 
increment in accordance with a harmonic oscillation of amplitude IK. 
The radius has its least value when the Earth is at A or B, and its greatest 
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Fig. XI 

value when the Earth is at M or N; the period of the oscillation is thus, 
like the period for the rotation of the center of the orbit, half a year. The 
calculation of the maximum elongations predicted by the theory proceeds 
on the basis of Figure XI, where the letters A, B, C, D, E have the same 
significance as in Figure X, and where P is the Earth, R the momentary 
center of Mercury's orbit, and a the Mean Sun's motion from aphelion. 
First the length PR must be computed, then the angle of elongation of 
Mercuy from the center of its orbit, and finally the angle between 
the center of Mercury's orbit and the Mean Sun (C) as seen from the 
Earth.30 
The greatest eastern and western elongations which are summed to 

give the points plotted in Figure IX are plotted separately in Figure XII, 
the greatest eastern elongations as positive ordinates and the greatest 
western elongations as negative ordinates. It is apparent that the Ptole- 
maic and Copernican predictions of maximum elongations do not exactly 
agree, and that the disagreement can be as high as 65', as between the 
greatest eastern elongations when the Mean Sun is at 134", and between 

16' 
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Fig. XII. Plot of Maximum Eastern & Western Elongations of Mercury: Ptolemaic. Coper- 
nican, and Keplerian. 

the greatest western elongations when the Mean Sun is at 251". Mean- 
while, the two theories agree more nearly with each other than either 
agrees with the geometry of Figure V. Thus the Ptolemaic prediction of 
the greatest eastern elongation when the Mean Sun is in 160" or 190" is 
over 3" less than the value deduced from Figure V. 

On the basis of three observations, one made by Bernard Walther in 
1491 and two others made by Johann Schoner in 1504, Copernicus con- 
cludes that the! longitude of Mercury's apogee in his own time is 2383", 
"for it was not possible," he says, "to take it as less without prejudice to 
the observations" (De revofutionibus V, 30). This result constitutes a 
marked improvement over Ptolemy's determination. If we extrapolate 
modern values for the eccentricities and perihelia of the Earth and Mer- 
cury backwards to A.D. 1500 and use once more the geometrical relations 
in Figure V to compute the directions of the lines FD and MD, we find 
for the first 243"34' and for the second 233"33'. For a position of the 
Mean Sun along the line FD in the direction of apogee, as previously 
explained, the s u m  of the opposite maximum elongations is least; for a 
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position of the Mean Sun on line MD extended, the opposite maximum 
elongations are equal. Copernicus’s value for the longitude of the apogee 
falls just midway between these two values, and so could not be noticeably 
improved upon. Ptolemy’s value for the longitude of the apogee, we may 
recall, fell 20” clockwise of MD. 

Copernicus’s improvement in the longitude of the apogee, however, 
does not go very far towards reducing the large errors in maximum 
elongations that follow from his assumed circular motions and numerical 
constants for Mercury. His assumption that this mechanism not only fits 
the Ptolemaic observations but also remains valid in his own time is based 
on a faith in earlier astronomers: “I think we must grant that the commen- 
surability of the circles has remained from Ptolemy’s time to now, since 
in the case of the other planets the good authorities who preceded us are 
not found to have been mistaken here” (De revohtimibus, V, 30). In 
fact, both the Ptolemaic and Copernican theories could have been very 
considerably improved, insofar as their predictions of maximum elonga- 
tions are concerned, by a better choice of numerical constants. Thus to 
obtain a better Ptolemaic theory we can put the perigee for A.D. 140 at 
33”40‘, and take the magnitude of the epicycle as 0.377, the eccentricity 
of the deferent (BF in Figure VIII) as 0.0643, the eccentricity of the 
equant (BG in Figure VIII) as 0.0476, and the radius of the small hypo- 
cycle (FD in Figure VIII) as 0.0098. The maximum elongations implied 
by these constants for perigee, apogee, and the quadrants are compared 
with the maximum elongations deduced from Figure V in the following 
table. 

Improvement in Ptolemy’s numerical constants can thus considerably 
reduce the errors in predictions of the magnitude of maximum elongations. 
Such improvements in the theory, however, cannot eliminate errors of as 
much as five days in the predictions of the times of maximum elongation, 
since the Ptolemaic theory gives the planet a uniform motion on its 
epicycle, while its actual orbital motion is markedly non-uniform. This 
non-uniformity affects geocentric longitude still more when the planet is 
at positions other than maximum elongation, and its largest observable 
effect occurs when Mercury is in transit across the face of the Sun. 
Transits of Mercury occur at irregular intervals, about fourteen of them 
on the average per century; the duration of any one transit does not exceed 
about four hours. A theory’s successful prediction of one such transit 
could well be an extraordinary piece of luck. Prediction of three such 
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Table IX 

Deduced from Implied by 
Figure V New Constants A 

1. Elongations from Mean Sun 
in 33'40' (perigee) 
Greatest Eastern Elongation. ....... 23-45' 23'46' 1' 
Greatest Western Elongation. ...... 23'50' 23"46' 4' 
Average. ......................... 23'47' 23'46' 1 '  

2. Elongations from Mean Sun 
in 213'40' (apogee) 
Greatest Eastern Elongation. ....... 20'38' 20"45' 7' 
Greatest Western Elongation. ...... 20'54' 20"45' 9' 
Average .......................... 20'46' 20'45' 1'  

3. Elongations from Mean Sun 
in 123'40' (quadrant) 
Greatest Eastern Elongation. ....... 25"44' 25'22' 22' 
Greatest Western Elongation. ...... 19'59' 19'49' 10' 

4. Elongations from Mean Sun 
in 303'40' (quadrant) 
Greatest Eastern Elongation. ....... 19'42' 19'49' 7' 
Greatest Western Elongation. ...... 25' 4' 25'22' 18' 

transits to within a few hours, where the older theories were missing the 
mark by several days, would not establish the theory as a straightforwardly 
empirical truth, but even to the theory's most adamant opponents, such 
success could hardly fail to give pause. It was this latter sort of success 
that the Keplerian theory of Mercury had achieved by May of 1661. 

Claims to have observed a Mercury transit were made several times 
prior to the 17th century; such claims appear to have been mistaken, the 
observer in most cases having no doubt taken a sunspot for Mercury.31 
Kepler himself mistook a sunspot for Mercury in 1607.32 As is well known, 
his prediction of a Mercury transit to occur on 7 November 1631 (N.S.)  
led to the first unquestioned observation of such a transit. Actually, the 
prediction was mistaken by some five hours in time, or 14'24" in longi- 
tude, as Martin Hortensius, a defender of Lansberg's tables, was happy 
to be able to point out. 33 Lansberg's tables, Hortensius admitted, were 
off by 1'8'; other tables were much worse, having errors in longitude of 



The Inner Planets and the Keplerian Revolution 243 

43”, 5” or more. The point worth noting is that Hortensius sees the error 
in Lansberg’s tables as remediable, and meanwhile views Kepler’s theory, 
closely bound up as it is with Keplerian speculations, as dubious: “Ob- 
servations are to be trusted, not specious reasonings; geometrical de- 
monstrations, not harmonic speculations.”34 

One of the most influential converts to Kepler’s elliptical path and 
inequable motion was undoubtedly Ismael Boulliau, and Boulliau im- 
plies in 1645 that one of the important factors in his conversion was the 
Keplerian success with Mercury. “To bring the motions of Mercury under 
numerical laws, “he writes in his Astronomia Philolaica, “was [previously] 
difficult if not impossible for all [astronomers], who before Kepler used 
only the circular hypothesis.”35 Boulliau further points out that the ine- 
quable motion postulated by Kepler is necessary if the phenomena of 
Mercury are to be saved: 

. . . between 1624 and 1631 I made a number of observations of Mercury, and attempted 
to correct the errors of the Prutenic Tables, retaining the Copernican hypothesis; but I 
could never get my observations to agree with the calculus, unless in the superior part 
of the orbit of Mercury [near aphelion] I retarded its motion, and in the inferior part 
[near perihelion] 1 speeded it up. But my attempt did not have a happy outcome, since I 
made this inequality of motion commensurable with the Earth‘s motion, while in fact 
it has to be referred to the motion of Mercury in its own orbit. Not yet had Kepler’s 
tables and his Commentaries on the Motions of Murs fallen into my hands, and I had 
scruples about departing from the circular hypothesis, nor had it occurred to me that 
the orbit of the planet could be an ellipse: lacking which, if anyone should attempt to 
twist the motions of the planets into other circuits. . . . he would but lose time and trouble, 
and revolve the stone of Sisyphus.”‘ 

On the other hand, it is significant that Boulliau does not announce his 
allegiance to the ellipse before he has hit on his own explanation for it- 
an explanation which is quite different from Kepler’s “magnetic philos- 
ophy”, and which derives the non-unifonn motion on the ellipse from 
angularly uniform motion that shifts continuously from one to another 
circle in an infinite set of circles arranged to form a cone.37 

Further empirical evidence was added in 1651 and again in 1661 by a 
second and third observation of a Mercury transit. These observations 
confirmed, Vincent Wing wrote in his Astronomia Britunnica of 1669, 
that Kepler was the chief “instaurator” or restorer of astronomy: 

But this is proved especially by the planet Mercury, which on 28 October 1631, and again 
on 23 October 1651 and 23 April 1661 [the dates are old-style], was interposed between 
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our vision and some part of the body of the Sun; on each occasion the Keplerian Tables, 
conforming to the Copernican hypothesis, best agreed with the truth, while the tables 
of Longomontanus and Argolus. conforming to the Tychonic system, contained errors 
of many days.38 

In Wing’s view, then, the three Mercury transits impressively confirmed 
the Copernican system in the form that Kepler had given it. By no means 
did they prove the Keplerian theory correct, or disprove the possibility 
that another theory, built on different foundations, could do as well. 
Newton, reading Wing’s Astronomia Britannica shortly after its publica- 
tion, could still be in doubt as to the exact ellipticity of the planetary path. 
But it is noteworthy that the alternative hypothesis he outlines on the 
endpapers of his copy of the Astronomiu Britannica, while allowing for 
adjustment of orbital shape and motion to fit observation, nevertheless 
assumes an oval orbit with line of symmetry passing through the Sun.39 
A zeroth Keplerian law, the intersection of the orbital axes in the Sun, is 
here taken for granted; and the oval orbit, traversed under the influence 
of forces, is also an originally Keplerian idea. 

Comparing Kepler’s theory of Mercury with the corresponding Ptole- 
maic and Copernican theories, Owen Gingerich has shown that Kepler 
reduces the errors in geocentric longitude by some two orders of magni- 
tude.40 For a mid-17th century observer, we must not imagine that the 
extent and assured character of this improvement was obvious : observa- 
tional error of observers like Riccioli could be several times what it had 
been in Tycho’s observations, still under dispute were the magnitude of 
the corrections required for refraction and parallax, and Mercury itself 
was seldom observable. Meanwhile, the observed positions of Jupiter and 
Saturn were failing by variable amounts to accord with the Keplerian 
tables-the result of an inequality that first Kepler and then Jeremiah 
Horrox began to suspect, and that Newton with a new hypothesis as 
to its possible meaning is asking Flamsteed to look for in December, 1684. 
The empirical success of the Keplerian tables was not unifonn or uni- 
formly overwhelming, but it was sufficient to put astronomers generally 
onto a quite new way of analyzing their data, one that was heliocentric 
and heliodynamic-with orbital axis passing through the Sun and the 
planet varying its speed according as it approached or receded from the 
Sun-as the Copernican formulations were not. It is the thorough-going 
and indeed revolutionary character of this shift in paradigms, as it affects 
the inner planets, that the preceding analysis has been designed to elucidate. 
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NOTES 

1. Philadelphia: The American Philosophical Society, 1964. 
2. The claim is made for Ptolemy’s theory of Mercury by Derek J. Price, The Equatorie of 

the Planeris (Cambridge: At the University Press, 1955). p. 102. Price makes a similar 
claim in his “Contra-Copernicus: A Critical Re-estimation of the Mathematical 
Planetary Theory of Ptolemy, Copernicus, and Kepler”, in Marshall Clagett (ed.), 
Critical Problems in the History of Science (Madison: Univ. Wisconsin Press, 1959), 
p. 209, stating that Ptolemy’s theory of Mercury “accorded exactly with observation”. 
Similarly, Arthur Czwalinain“Ptolemaeus, die Bahnen der Planeten Venus und Merkur”. 
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