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PTOLEMY’S THEORY OF THE INFERIOR PLANETS
N. M. SWERDLOW, The University of Chicago

At its foundation, Ptolemy’s astronomy is empirical. Much of the Almagest is
devoted to the derivation of numerical parameters from observations selected to
isolate particular quantities so that they may be found in the most direct way.
But in addition the hypotheses, models, of the Sun, Moon and planets were also
derived or confirmed by observation although Ptolemy gives only brief descrip-
tions of his procedures without citation of specific observations. In this way, for
example, in 9.5 he justifies the use of an epicycle with motion in the positive
sense, of increasing longitude, at apogee for the second inequality of the planets,
and an eccentric for the first inequality, and in 10.6 he briefly describes his
demonstration that the eccentricity must be bisected, separating the centre of
uniform motion of the centre of the epicycle from the centre of constant
distance. The brevity of the accounts of these demonstrations has been of
serious consequence for the history of astronomy because Ptolemy’s description
of the motions of the bodies in the heavens and his justification of the
hypotheses to account for them — both correct, at least in principle, to a high
degree of accuracy — were received without further investigation for more than
fourteen hundred years, until the time of Tycho and Kepler, during which
centuries no significant improvement in accuracy was possible in the absence of
such investigations. And for this Ptolemy himself was largely responsible, for he
must have believed that the motions had been accurately described and the
correct hypotheses discovered once and for all — some were well known and in
use before his time in any case — and that, unlike the derivation of parameters
where improvements could be made from later observations, no one would ever
again have to carry out the labour of deriving or confirming hypotheses. The
Almagest is to a high degree didactic, and what the reader need never use or do
himself is not treated in great detail. Further, the observations used for these
demonstrations were of a rough and uncertain kind, such as planetary phases
and stations, and in some cases conventional estimates of quantities like lengths
and times of retrograde arcs, and the demonstrations, using roundabout
methods and approximations, also produced fairly rough numerical results
from which mostly qualitative conclusions were drawn, all of which run
contrary to Ptolemy’s exposition in which proofs and derivations are as
definitive and as direct as possible.

However, the demonstrations of hypotheses not only were the foundation of
the derivations of parameters in the Almagest, but also formed a part of
preliminary analyses that provided approximate values of parameters that were
then confirmed or improved by the more refined methods set out by Ptolemy at
length in his text. And in fact various difficulties in Ptolemy’s demonstrations,
including the selection and, in some cases, adjustment of observations, depend
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upon such preliminary analyses that showed more or less what to look for both
in observations and in the final derivations. It is of course the absence of the
preliminary analyses along with the problems of the reported observations and
demonstrations that have left Ptolemy open to charges of deception that have
been raised at least since the sixteenth century and increasingly so in our own
day.! However, a consideration of the sorts of analyses that must have preceded
the demonstrations in the text, and of the constraints on the observations due to
the difficulty of finding the ideal configurations required for the demonstrations,
shows that Ptolemy was working within these limitations with extraordinary
ingenuity, using less-than-ideal observations of uncertain accuracy to derive or
confirm hypotheses and parameters, and conversely using hypotheses and
provisional parameters to select and correct these very observations.

If the method appears circular, it is, although ‘iterative’ would probably be a
better word. After all, Ptolemy’s only means of verifying the accuracy of
observations was consistency, the determination that the result of one demon-
stration, say, of a parameter, was consistent with other demonstrations of either
the same parameter or related parameters, using either the same or different
observations and either the same or different procedures. For example, the two
sets of eclipses used to derive the radius of the lunar epicycle in 4.6 appear to
confirm the same value — although even here some adjustment is likely — and
in turn provide the basis for the criticism and correction in 4.11 of times of the
eclipses used by Hipparchus for his manifestly inconsistent demonstrations.
Such criticism and correction was doubtless applied by Ptolemy, not only to
earlier observations, but to his own, and it is probable that many of the reported
observations and derivations in the Almagest are in their present form refine-
ments of preliminary versions that preceded the demonstrations of the pub-
lished text. There is important evidence for this conclusion in the recent
discovery that the Canobic inscription, which contains some parameters differ-
ing from the Almagest, is actually an earlier work in which Ptolemy set out the
principal numerical results of his research before, perhaps several years before,
publishing his comprehensive treatise.? Whether the demonstrations underlying
the Canobic inscription were identical to those in the Almagest cannot be known,
but there is no question that both revision and correction took place in
preparing the later work. My guess is that the Canobic inscription was based at
least in part upon demonstrations preliminary to those in the Almagest, and that
various difficulties, such as those often noted in the mean motions of the
planets, are the result of Ptolemy’s neglecting to revise his earlier work to
achieve complete numerical consistency, particularly in cases like the mean
motions in which complete consistency to six sexagesimal places would be of no
practical significance.

Further, and this is very important, the demonstrations or the hypotheses
themselves may impose constraints on the parameters that in turn provide a
check on the accuracy of observations and an indication of how they are to be
corrected after a preliminary derivation. To take a well known example, the
procedure for finding the distance of the Sun in 5.15 is so sensitive to minute
changes in its parameters — the lunar distance at which the apparent diameters
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of the Sun and Moon are equal and the apparent diameters of the Moon and
shadow at that distance — that the slightest decrease in any of them will cause
the solar distance to increase enormously or even become infinite or undefined.3
Ptolemy surely examined and adjusted the values of the parametets entering
into this demonstration, and consequently the observations from which the
parameters were derived, in accordance with these severe constraints, for
otherwise it is not likely that the demonstration would have reached even a
plausible result. An even more remarkable case, as we shall see, is that of
Mercury, for which the hypothesis is derived from observations, and then in
turn imposes constraints on the parameters that require adjustment of the same
observations. The relation of observation and theory in Ptolemy’s astronomy is
complex, with each used as the basis of, not only the derivation and confirma-
tion, but also the criticism and correction of the other.

The demonstrations for the inferior planets are ideally suited to an investi-
gation of this subject for they appear to be completely empirical in that, not
only the parameters, but also the hypotheses themselves are explicitly either
derived or confirmed by observations reported in Ptolemy’s exposition. After
completing the exposition of Mercury, Ptolemy says (10.1), ““Such, then, was the
method by which we found the hypotheses for the planet Mercury, the size of its
anomalies and also the precise amounts of its periodic motions”. And likewise,
after finding the eccentricities and epicyclic radius of Venus (10.4), “Such, then,
is the method by which we determined the type of [Venus’s] hypothesis and the
ratio of its anomalies”.4 Evidently, he considered the demonstrations to be both
derivations of parameters and derivations or confirmations of the hypotheses.
And although it does not appear, at least from the text, that there were
preliminary analyses of a different sort, we shall see that Ptolemy must earlier
have carried out analyses by quite different means, and in this way reached both
the necessary structure of the hypotheses and at least preliminary parameters
that were then confirmed or refined by the demonstrations he chose to set out.

Greatest Elongations

The demonstrations, both preliminary and final, are determined by the kinds of
observations that may be made of the inferior planets, and thus differ greatly
from the treatment of the superior planets. In the case of the latter, the most
important observations are of oppositions, in which the planet is directly
between the Earth and the centre of the epicycle. The equivalent configuration
for the inferior planets is inferior conjunction, but since the centre of the
epicycle lies in the direction of the mean Sun, and is thus very close to the true
Sun, the planet is invisible at inferior conjunction. On the other hand, the planet
is clearly visible at greatest elongation from the Sun, whether mean or true, and
Ptolemy’s demonstrations for Venus and Mercury are based principally upon
observations of greatest elongation, or rather of close approaches to greatest
elongation.

A greatest elongation is illustrated in Figure 1, omitting the effect of any
eccentricity. The centre of the epicycle C lies in the direction of the mean sun S,
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FiG. 1.

and when the planet P is at greatest elongation n, OP is tangent to the epicycle
and the angle at P is a right angle. This makes it very simple to estimate the
radius of the epicycle r = R sin m and the mean anomaly a = 90° + n.
Although greatest elongations were not one of the characteristic phenomena
like phases and stations — doubtless because they were not considered omi-
nous —they were observed before Ptolemy. Rough values, probably with
respect to the true Sun, are found in a number of ancient sources, and were
probably already used before Ptolemy for finding an epicyclic radius since there
appears to be no other purpose in noting greatest elongations. For example,
Pliny (Natural history 2.38-39) gives 46° for Venus and 22° for Mercury,
attributing the first to Timaeus and the second to Cedenas and Sosigenes. These
are of considerable interest for, letting R = 60, we find for the radius of the
epicycle,

Venus: n = 46°, r = 43;9,37 ~ 43;10,
Mercury: n = 22°, r = 22;28,35 ~ 22,30,

exactly Ptolemy’s parameters. Evidently, he was here confirming earlier esti-
mates, and more importantly, had a provisional radius of the epicycle for his
preliminary analyses, which, as we shall see, can be very useful.

The effect of an eccentricity on the magnitude and location of greatest
elongation is complex, for it may then take place, not at the tangent point, but
some small distance away.’ The reason is that the change of elongation due to
the change of the equation of centre may exceed the change due to the planet’s
motion on the epicycle. However, for Ptolemy’s purposes greatest elongation is
understood to take place at the tangent point — compared to the departure
from true greatest elongation inherent in his observations the difference is
negligible in any case — and his demonstrations depend upon this assumption.

For the demonstrations, Ptolemy uses greatest elongations with the mean Sun
in specific locations:

(1) points symmetrical to the apsidal line to find its direction;
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(2) the end points of the apsidal line to distinguish apogee and perigee and to
find the radius of the epicycle and the eccentricity of the centre of the
eccentric;

(3) 90° of mean eccentric anomaly from the apsidal line to find the eccentri-
city of the centre of the equant circle.

It is also necessary, or at least preferable, that two opposite greatest elongations,
morning and evening, take place with the mean Sun in each of these positions.
Two important questions are therefore whether during the period of Ptolemy’s
observations the planets were at greatest elongation when the mean Sun
occupied the required positions, or if not, how far they were from greatest
elongation, and whether two opposite greatest elongations occurred with the
mean Sun in the same position. We can make this examination with the cycles
for zodiacal and anomalistic periods used in 9.3 to find the mean motions in
longitude and anomaly. The observations of Venus extend from 127 to 140 and
of Mercury from 130 to 141, so let us call the outer limits 127-141. For the =
inferior planets, the cycles are of the form Nv years plus ¢! days contain Ar
anomalistic rotations or periods, and each period contains one of each synodic
phenomenon, and thus one morning and one evening greatest elongation.
Neglecting the small errors €, the locations of the mean Sun at all elongations of
the same kind will divide the zodiac into arcs of 5 ~ 360°/A, the mean motion of
the Sun in each synodic period between successive elongations of the same kind
is AXO ~ N/A - 360° and the motion of the planet on the epicycle in one year is
Ada ~ A/N - 360°. The following short cycles are of interest (AXo and Aad to the
nearest degree):

A N e 5 AL AG
Venus: 5r 8y —2d 72° I" + 216°  225°
Mercury: a 41 13 +3 8% 114 3r + 55
b 104 33 -2 3L 114 3+ 55
c 145 46 +1 21 114 3+ 55

The cycle for Venus is the one used for the mean motions. For Mercury the
mean motions were derived from the 46-year cycle ¢ that can be divided into two
shorter periods a and b, which combine as a + b = ¢, and it is the 13-year
period a that is of interest here since it covers about the duration of Ptolemy’s
observations.

In each cycle there will be A greatest elongations of each kind dividing the
zodiac — not successively — into arcs of & degrees. The required locations of
the mean Sun for Ptolemy’s demonstrations are separated by arcs of 90°, i.e.
apogee, +90° from apogee, and perigee. Since for Mercury & ~ 9°, at least one
greatest elongation of each kind must occur with the mean Sun within 43°, or
414 of solar motion, of these locations. Conversely, when the mean Sun is at the
required locations, the planet must once be within 444, about 14° of motion on
the epicycle, of greatest elongation of each kind, which can change the
elongation by about 1°. Hence, it will be possible to find the planet quite close to
greatest elongation. For Venus, however, conditions are not so favourable.
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FiG. 2.

There are only five greatest elongations of each kind in each 8-year period, in
the next 8-year period the locations of the elongations will shift only about —2°,
and Ptolemy’s observations extend over only 13 years. Since § ~ 72°, at greatest
elongation the mean Sun may be as far as 36°, or 363¢ of motion, from a
required position, and conversely when the Sun is in such a position the planet
may be up to 221° of motion on the epicycle from greatest elongation, changing
the elongation by 75° in the worst case.

The next question is whether two opposite greatest elongations can occur
within a cycle with the mean Sun at about the same position. For Mercury, since
8 = 9° for each kind of elongation, it is obvious that both kinds must occur
within arcs of less than 41°, which is fairly close, but it is not clear that anything
like this occurs for Venus where 8 ~ 72°. Therefore, consider Figure 2 showing
arcs of mean anomaly P, — P, = Ad, from evening to morning and P, - P, =
Aa, from morning to evening. Since at greatest elongation & = 90° + 7, using
the conventional values of 1, these can be estimated as

Venus: n = 46°, a = 136°, Aa, = 88°, Aa, = 272°,
Mercury: 22, 112, 136 , 222 .

Now, we look for divisions of Venus’s 8-year and Mercury’s 13-year periods
into integral years in which the planet moves through arcs of mean anomaly Ad
— less whole revolutions r — close to these. From Ad = n(A/N - 360°), where n
is an integer < N, we find:

Venus: n =2 Ad= 1"+ 90°x Aa, = 88°
6 3+ 270° = Ad, = 272
Mercury: 9 28" + 138° ~ A@, = 136
4 12r + 222° ~ Aa, = 224
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In every case the computed Aa@ comes within +2° — about 3¢ of anomalistic
motion for Venus and 1¢ for Mercury — of Ad between opposite greatest
elongations. Consequently, the pattern of elongations and intervals will be:
Venus: E-2?>M->6¢->E..=E —-E, = 8 -2
Mercury: E->®%->M->4#->E..=E —-E =13+ 3¢
For Mercury, with 41 elongations of each kind in 13 years, such a recurrence is
no wonder, but for Venus with only 5 of each kind in 8 years, it is truly
interesting.® It means that each evening elongation will be paired with a morning
elongation 2 years later in about the same position, which is just what Ptolemy
needs, but it also means that all 10 elongations will occur in only 5 narrow
regions of the zodiac, with a shift of only —2° in each 8-year cycle, and this
makes the problem of finding greatest elongations close to the required
positions with respect to the apsidal line even more difficult.

Before leaving the subject of greatest elongations some further points should
be made. The intervals, here derived from rough estimates of elongations and
short cycles of mean motions, are only mean values. The opposite effects of the
equation of centre on the true morning or evening elongation can change the
interval E - M or M — E by as much as 64 for Mercury and fully 16¢ for Venus.
Further, it is as difficult to determine by observation the exact time of a greatest
elongation as of a station. Near greatest elongation the planet moves with about
the same speed as the Sun, about 1° per day, but the elongation changes slowly,
by 0;5° in + 24 for Mercury and + 64 for Venus, and in no way could Ptolemy
estimate the time closer than these limits. Hence the selection of a particular
date for true greatest elongation would be arbitrary in any case. Ptolemy
appears to have had observational records of all elongations of Venus and a
considerable number of Mercury for the period 127-41. These records con-
tained, not just the date of greatest elongation, which Ptolemy surely knew
could not be estimated so closely, but observations of the position of the planet
for several days, for Venus as many as 30 days, around the time of greatest
elongation. Since it is highly unlikely that the planet is at greatest elongation
and the mean Sun at the required position on the same day, Ptolemy takes a
date on which the mean Sun is as close to the required position, for this is the
more important condition, and the planet as close to greatest elongation, as can
be found during the period of his observations. In every case his dates of
elongations meet these criteria—during the period 127—41 there are no better
dates for Venus and a single slightly better date for Mercury in June of 141
which may be too late—and this shows that his records must have been
extensive enough for him to select exactly what he needed. Unfortunately,
Ptolemy explains none of this, and even though he must have known that the
planet wds not at true greatest elongation at the reported time of the obser-
vation, he calls these configurations ‘“‘greatest elongation™, probably because
the planet was very close and because the observation is applied as though it
were, but also because, as we shall see, the observation has been adjusted to the
position the planet would have if it were at greatest elongation, with greatest
elongation interpreted as the tangent point on the epicycle. This has led to much
confusion and the belief that Ptolemy made large errors in finding the time of
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greatest elongation. The observations do have some notable errors, which we
shall discuss, but the departure from the date of true greatest elongation is not
an error, but a compromise necessitated by the positions of the mean Sun
required for the demonstrations.

In the following exposition, we shall both review Ptolemy’s demonstrations in
the Almagest and also consider the preliminary analyses that preceded them
which will, we believe, make his own demonstrations clearer and explain a
number of their difficulties.’

Venus

The observations of the inferior planets are among the most interesting in the
Almagest because so much detail is given. Ptolemy seems to paraphrase or even
quote the actual report, as he wrote it down or received it, and he then reduces it
to find the elongation from the mean Sun. Eight observations are used to derive
the hypothesis and its parameters, and two, not of greatest elongations, to
correct the mean anomaly. Three (1, 3, 5) were given to Ptolemy by “Theon the
mathematician”, apparently an associate in Alexandria about whom nothing is
known. These, and two by Ptolemy (2, 4), are of configurations of Venus with
fixed stars without use of the armillary—one wonders if Ptolemy did not even
prefer this when possible—and four (6-9) were made by Ptolemy with the
armillary set on a fixed star. An ancient report (10) by Timocharis appears to be
an observation of an occultation of a star by Venus, although no such
occultation occurred. We shall not consider the observations (9-10) used to
correct the mean anomaly.

As an example of a report and reduction of an observation of a configuration,
here is one (3) by Theon that is particularly interesting because it includes an
(illusory) apparent diameter of Venus. The observation in 10.1 is from Hadrian
12 Athyr 21/22 (127 Oct 11/12):

Venus as a morning-star had its greatest elongation from the Sun when it
was to the rear [east] of the star on the tip of the southern wing of Virgo [B
Vir] by the length of the Pleiades [14°], or less than that amount by its own
diameter [°!]; and it seemed to be passing the star one Moon [$°] to the
north.

For the given date at 56 a.m. Venus and B Virginis are well above the eastern
horizon and the Pleiades are visible above the western horizon for Theon’s
comparison, which does not seem easy to make. The longitude of the star in
Ptolemy’s catalogue is §, 29°, and for the 10 years preceding Antoninus 1, the
epoch of the star catalogue, Ptolemy subtracts 15° to give §, 284°. Adding to this
the length of the Pleiades 14° for the distance between the star and Venus gives

3° but Ptolemy gives T 03°, meaning that he has subtracted 15° or 5’ for the
apparent diameter of Venus, a very high estimate.! By computation the mean
Sun was at == 175%°, and thus the elongation of Venus as a morning star was
475, Note the fractions rather than sexagesimals; these are characteristic of

Ptolemy’s reports and reductions of observations, and probably reproduce the

© Science History Publications Ltd. * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1989JHA....20...29S

rI9BOJHA © 200 205!

Ptolemy’s Theory of the Inferior Planets 37
TABLE 1.

No. Date Ao Obs n Com 1 Mod 1 Date Na
1. 132 Mar 8 E 344;15° 47;15° 47;10° 46;50° Feb 21 47,58°
2. 140 Jul 30 M 125;45 —47;15 —46;32 —46;11 Jul 14 —46;55
3. 127 Oct 12 M 197;52 —47;32 —47;24 —47; 7 Sep 22 —48;21
4. 136 Dec 25 E 272; 4 47;32 47;:47 46;52 Dec 13 47,31
5. 129 May 20 M 55;24 —44;48 —44;10 —44;36 May 6 —44;52
6. 136 Nov I8 E 235;30 47;20 45;54 45;34 Dec 13 47;31
7. 134 Feb 18 M 325;30 —43;35 —43;32 —44;33 Feb 15 —44;33
8. 140 Feb 18 E 325;30 48;20 48;16 47,59 Feb 19 47,59

form of his own records. By recomputation from Ptolemy’s theory for 127 Oct
126 am, X = =17;51°, 1 = M0;27°, and n = —47;24°, which differs by
+0;8° from the reduction (or + 0;3° if the diameter of Venus were not deducted).

Observations 1-8 are summarized in Table 1. For each we give the date, time
as morning M or evening E, the mean longitude of the Sun A_, and the
elongation of Venus m, all as reported by Ptolemy although substituting
sexagesimal for common fractions. These are followed by recomputation from
Ptolemy’s theory and from modern theory of the elongation n for the date of the

FiG. 3.
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TABLE 2.
Region E: X Mg M: %, Ny Mg — Ny  Ptolemy

1 37-34°  46L°  4240°  —445° 91° 893°
1 263-60 47 24643  —47 941 943
11 108-05 44% 112-10 —47 914 904
IV 32826 48 32220 —44t 921 912
v 186-83  45.  178-76  —481 932 932

observation, taking the time as 6 a.m. for M and 6 p.m. for E, and then the date
of true greatest elongation and its value n__ .° Note that elongations 4 and 6,
which are 374 apart, are respectively 124 after and 25¢ before the same true
greatest elongation — proof, if any were needed, that Ptolemy knew very well
that these were not true greatest elongations — and except for 7 and 8, which
are very close to opposite greatest elongations six years apart, the other intervals
from true greatest elongations are 149-204. The locations of the mean Sun in
these elongations are shown on the inner circle of Figure 3 marked 1-8 and E
for evening and M for morning elongation, and the outer circle shows the
locations of the mean Sun in all twenty true greatest elongations — computed
by modern theory and reduced by 1° to Ptolemy’s equinox —in the two
complete 8-year cycles of the period 12741 inclusive. The locations fall into five
regions numbered I-V in the order of the successive elongations of the same
kind about 216° and 5849 apart, and each region has two E and two M
elongations. The figure also shows Ptolemy’s apsidal line 4B and the points
+90° from apogee required for his demonstrations, the distances of which, and
the distances of the mean Sun in Ptolemy’s observations, from the true greatest
elongations can easily be seen.

Ptolemy demonstrates the direction of the apsidal line using pairs of equal
and opposite elongations 1-2 and 3-4. However, before selecting such obser-
vations from his records, particularly because they were not true greatest
elongations, he already had a provisional direction of the apsidal line with a
distinction of apogee and perigee. Although he does not set out the obser-
vations, he remarks (10.2) that nowhere does he find the sums of opposite
elongations to be less than in Taurus or greater than in Scorpio — indeed, the
sums of opposite elongations is the best criteria for locating apogee and
perigee — and he could determine this with the true greatest elongations from,
say, 12741 shown in the figure or even with the elongations of one 8-year
period. In Table 2 we give for each true greatest evening and morning
elongation in each region, the mean longitude of the Sun XO, the elongation 1,
or m,,, and the sum of opposite elongations n;—mn,, to the nearest +°. The last
column shows mn_;—mn,, computed from Ptolemy’s theory of Venus — Xo also
differs slightly — for the same period 127-41. Clearly I in Taurus is near apogee
and II, although in Sagittarius rather than Scorpio, is near perigee, and since I
and IT are more than 180° apart, the apogee must be at a longitude > I, or the
perigee < II, or both are true (as in fact it turns out).

Having made the important provisional distinction of apogee and perigee,
Ptolemy can look through his records of observations near greatest elongation
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Fic. 4.

to find pairs of equal and opposite elongations, for then the mean Sun is
symmetrical to the apsidal line, which may be found by bisecting the arc of
longitude between the positions of the mean Sun. This is the inverse application
of a demonstration in 9.6 that at equal mean longitudinal distances on either
side of apogee or perigee, the equations of centre and the maximum equations
of the anomaly are equal. There are in fact two positions on either side of the
apsidal line where the greatest elongations, which are the sums of the equation
of centre and the maximum equation of the anomaly, are equal — they are not
easy to find for their exact locations depend upon both the equation of centre
and the distance of the epicycle—and the wrong pairing would not be
symmetrical to the apsidal line.l® However, the restriction of greatest elonga-
tions of Venus to just five regions over a period of a number of years, the
distribution of the four selected elongations, and Ptolemy’s provisional location
of apogee and perigee preclude this ambiguity. Ideally, the demonstration
should be done from equal sums of opposite elongations at positions on either
side of the apsidal line, which are uniquely symmetrical, but these too are
precluded by the limited locations of greatest elongations. Hence Ptolemy finds
elongations 1-2 and 3-4 — in each pair the elongation is equal and opposite —
shown in Figure 4 in which the mean Sun is S, the direction of the planet P, and
the elongation n. Since n, = —mn, and —n, = n,, each pair S|S, and S,S, is
symmetrical to the apsidal line, and thus, bisecting the arcs between them, the
apsidal line passes through ¥ 25° and  25°. Now, from the sums of true
greatest elongations, Ptolemy already knows that the apogee is in Taurus and
the perigee in Scorpio, but to confirm the distinction, he takes elongations 5-6
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FiG. 5.

in which Xos ~ g 25°and X06 ~ m_25° Since 1, < 7, the apogee must be at
8 25° and the perigee at m_25°.

Elongations 5 and 6 are also used to derive the radius of the epicycle and the
eccentricity determining distance. Here and in the following demonstrations, we
use the absolute values of the elongations. In Figure 5, since 7 is constant

r=(R + e)sinmn, = (R — e)sin 7

from which it follows that

e _ sinm, —sinm,

R~ sinm, +sinmy
Ptolemy, solving in separate steps from n, = 44;48° and n, = 47;20°, finds that
where R = 60, e ~ 14 and r = 43¢. Note that e is one-half the solar eccentricity
of 24 found in 3.4 and r exactly the radius following from the pre-Ptolemaic
estimate n = 46°. Neither is a coincidence.

To find the eccentricity determining direction, Ptolemy uses opposite elonga-
tions 7 and 8, both with the mean Sun at about —90° from apogee where the
equation of centre is near maximum. These are also the closest of all Ptolemy’s
observations to true greatest elongation. The configuration is shown in Figure 6
in which the angle at Eis 90° and the elongations 1, and n, are separated by the
parallel direction OS from the Earth to the mean Sun. The equation of the
anomaly c, and equation of centre c_ are

Ca = %(Tlg + n7)7 C'c = %(Tlg - 117),
from which
OC = rfsinc,, OE = OCsinc,.
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FiG. 6.

From n, = 43;35° and n, = 48;20°, Ptolemy finds

c, = 45;57,30°, ¢, = 2;22,30°, OC = 60;3, OE = 2.
Here we note that OF = 2e is equal to the solar eccentricity and is twice the
eccentricity e determining distance.

The hypothesis of Venus that has been established is shown in Figure 7. The
observer is at O, the centre of the eccentric M, the equant centre E, and A4 the
apogee of the eccentric on which the centre C of the epicycle moves through the
mean eccentric anomaly K uniformly about E such that the direction EC is
parallel to the direction from the Earth to the mean Sun S. The planet P moves
on the epicycle of radius r through the mean anomaly & uniformly with respect
to the mean apogee F lying in the direction ECS. Where the radius of the
eccentric R = 60, the simple eccentricity of the centre of the eccentric OM = e
= 1,15, the double eccentricity of the equant centre OF = 2e = 2;30, and the
radius of the epicycle r = 43;10. The equation of centre c_ is subtended by the
double eccentricity and the equation of the anomaly ¢, is subtended by the
radius of the epicycle.

Although apparently straightforward, the derivation of Venus’s parameters,
which is also supposed to be a confirmation of its hypothesis, raises serious
questions. Put simply, Ptolemy could not have done it as he explains, and at
least one of the observations must have been altered. The selection of obser-
vations is determined by the positions of the mean Sun, and the consequent
compromises with the time of true greatest elongation are more or less harmful.
For elongations 7 and 8 at —90° from the apsidal line, used to find 2e, the
positions are favourable and the compromises small, but for elongations 5 and 6
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FiG. 7.

in the apsidal line, 6 in particular is much too far away from true greatest
elongation to give anything close to the elongation reported by Ptolemy.
Ptolemy claims 47;20°, computation gives 45;34°, a difference of nearly 2° which
is intolerable—even Ptolemy’s theory gives 45;54°—and the true greatest
elongation 25 days later of 47;31° shows far too small a difference from 47;20°
for so long an interval. My guess is that Ptolemy knew the elongations he
required in the apsidal line—they are too critical to compromise—and arranged
elongation 6 accordingly.

In fact, I believe that his original analysis was of this sort:
(1) From the minimum and maximum sums of opposite greatest elongations in
regions I and II, the apogee is approximately located near the end of Taurus and
the perigee near the end of Scorpio or the beginning of Sagittarius.
(2) From the traditional greatest elongation n = 46°, the radius of the epicycle
is r = R sin 46° =~ 43;10 subject to confirmation in (5).
(3) From elongations 7 and 8 in Aquarius, very close to true greatest elongation
and about 90° from the apogee in Taurus, the double eccentricity of the equant
is 2e = 2;30, exactly that of the Sun. It may also be pertinent that in Indian
astronomy the eccentricity of Venus and the Sun are usually equal, a tradition
that may have Greek antecedents (although none is known).
(4) The precise location of the apsidal line is taken as 90° from elongations 7
and 8, and rounded to ¥ 25° and m_25°, for it does seem remarkable luck to
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have true greatest elongations so close to 90° from the apsidal line. Hence it is
observations 7 and 8 that determine the exact location of the apsidal line,
something that could not be determined from the distribution of the true
greatest elongations.

(5) The eccentricity e = 1;15 determining distance may have been taken as half
2e = 2;30 by assumption that the bisection applies also to Venus. Or there is
another way that confirms the bisection independently. Use the true greatest
elongations from regions I and II near the apsidal line as though they were in
the apsidal line. For example, from the modern computation of n_, let n, =
44;50° and n, = 47;30°, and from Ptolemy’s procedure it follows that e = 1;20
and r = 43;15, the former close enough to a bisection of 2e to confirm e = 1;15
and the latter close enough to the traditional 43;10 to confirm it. The
elongations in the apsidal line are then

M, = sin~! ~ 44;,48°, m, = sin~! ~ 47;20°.

r
R+ e R—e
The observation of elongation 6, and perhaps also elongation 5, must have been
adjusted to fit these results which are correct in the sense that, given that e and r
have been independently confirmed, if there were true greatest elongations at
apogee and perigee, these would be their values. Essentially, this is a correction
for the fact that the planet was not at greatest elongation at the time of the
observation. And it is for this reason that Ptolemy calls the observations,
evidently now with some justice, “‘greatest elongations”. We shall discuss such
adjustments further in our consideration of Mercury where the reasons for them
are even more compelling.

Mercury

In the case of Mercury, Ptolemy’s empirical derivation of hypothesis and
parameters yields its most remarkable and enigmatic results, for some of the
observations raise serious problems and the hypothesis derived from them turns
out to differ from that of all the other planets. Apparently it was not always so.
In the Canobic inscription Mercury is assigned an epicyclic radius r = 22;30 and
an eccentricity e = 2;30 without indication that there is anything unusual about
its hypothesis.!! The radius of the epicycle, which is confirmed in the Almagest,
follows from the greatest elongation of 22° that, like the 46° elongation of
Venus, antedates Ptolemy. The eccentricity is equal to the eccentricity of the
Sun and the double eccentricity of Venus, and thus, assuming a hypothesis like
the other planets, the double eccentricity and equation of centre will be twice
that of the Sun and Venus. However, Ptolemy later changed his mind, as he says
himself in 4.9 after explaining improvements in his method of finding the mean
argument of lunar latitude:

We have done something similar with the hypotheses for Saturn and
Mercury, changing some of our earlier, somewhat incorrect assumptions
because we later got more accurate observations. For those who approach
this science in a true spirit of enquiry and love of truth ought to use any
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new methods they discover, which give more accurate results, to correct
not merely the ancient theories, but their own too, if they need it. They
should not think it disgraceful, when the goal they profess to pursue is so
great and divine, even if their theories are corrected and made more
accurate by others beside themselves.

In the Almagest there are two changes in the eccentricity: (1) the centre
determining direction, the equant centre, is half rather than twice the eccentri-
city determining distance, and (2) the centre determining distance, the centre of
the eccentric, is made to rotate in a small circle such that the least distance of the
epicycle is not reached opposite the apogee, but at two points 120° from the
apogee. In his exposition Ptolemy derives each element of this peculiar
hypothesis observationally, evidently from the “more accurate observations™,
although just as for Venus some of his demonstrations seem to depend upon
prior analyses that differ from those he chose to set out. Another distinctive
feature of his treatment of Mercury is that it is for Mercury alone that he
demonstrates from observations about 400 years before his time that its apsidal
line moves 1° in 100 years with respect to the equinoxes, just as the fixed stars,
and thus is sidereally fixed. This conclusion is then applied to the other planets
without explicit proof, for Ptolemy simply remarks (9.7) that “the phenomena
associated with the other planets individually fit [this assumption]”.

The observations of Mercury are on the whole closer than those of Venus to
greatest elongation when the mean Sun is in the positions required for the
derivation of parameters, the reason being, as we have noted, that in 13 years
Mercury has 41 greatest elongations of each kind dividing the zodiac into arcs
of only about 9°, rather than 72° for Venus, and thus when the Sun is in the
required positions the planet is not more than about 4} days from greatest
elongation. And as we have also noted, the observations selected by Ptolemy are
the optimal configurations that occur for his demonstrations during the period
127-41. In all, Ptolemy uses 16 observations of Mercury, more than of any other
planet. Eight are used to derive the hypothesis and its elements, six ancient
observations to find the direction of the apsidal line 400 years earlier, and two to
correct the mean anomaly. Of the first eight, seven were made by Ptolemy with
the armillary and one (7) by Theon as a distance from Regulus for which no
instrument is specified (although interestingly enough it is the most accurate of
all the observations). Ptolemy explains (9.8) that the armillary is particularly
valuable for observing Mercury for, although nearby stars are seldom visible
where Mercury can be observed, not far from the horizon near dawn or dusk,
the armillary may be set on more distant bright stars — Ptolemy uses Alde-
baran, Regulus, and Antares — that are visible.

Table 3 arranged like that for Venus, gives for observations 1-8 the date,
whether morning M or evening E, the mean longitude of the Sun Xo and the
elongation n as reported by Ptolemy and as computed from Ptolemy’s theory,
followed by recomputation from modern theory of the elongation 1, and then
the date and value of true greatest elongation n__ . Recall that Mercury’s 13-
year period is divided into two intervals between opposite greatest elongations
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with the Sun at about the same longitude — 9 years from E to M and 4 years
from M to E. It is this division that makes possible Ptolemy’s observations of
opposite pairs in the required positions, 1-4 and 7-8 each 9 years apart and 2-3
4 years apart. The intervals from true greatest elongation are all 4 days or less,
as would be expected, except for 2 which is 6 days.

Just as for Venus, the direction of the apsidal line is established from two pairs
of equal opposite elongations, n, = —n, = 21;15°and n, = —n, = 26;30°, so
that bisecting the arcs between the mean longitudes of the Sun, the apsidal line
passes approximately through < 10° and = 10°. Here again one wonders if a
provisional direction was not first reached from an analysis of a larger number of
equal elongations or better, sums of opposite greatest elongations in the same
locations. We have attempted this by recomputing from modern theory all
greatest elongations in the years 127-41 —there are 96 of them, 48 of each
kind — and bisecting the arcs between the mean longitude of the Sun where the
sums of opposite elongations are nearly equal. The result is that the apsidal line
passes through ¥ 14°and m_14° + 4°, while accurately it should be 5 18° and
m_ 18°, which is close enough to show that the method works in principle. (The
apsidal line with respect to the mean Sun passes through ¥ 20° and m_20°, but
the difference hardly matters.) It is not immediately clear how Ptolemy found a
direction nearly 40° in error. Although it is suggestive that elongations 1-4 are
all too large by about 1°-14°, and in fact the pairs 1-2 and 34, although close,
are not equal, it will soon be evident that these errors are not by themselves the
cause of the mislocation of the apsidal line, which in turn has serious
consequences for the entire theory of Mercury. Ptolemy next shows from six
ancient observations that 400 years earlier the apsidal line passed through < 6°
and = 6°, a difference of 4°, or 1° in 100 years, exactly the rate of the precession.
Since Ptolemy probably did not analyse these observations until after he
developed his theory of Mercury, we shall consider them later.

Again as for Venus, observations 5-6, very nearly at either end of the apsidal
line, distinguish the apogee from the point opposite the apogee. Since 1, =
19;3° is less than 1, = 23;15°, the apogee is at == 10° and the opposite point at
o 10°. However, o 10° is not the perigee, that is, the closest approach of the
centre of the epicycle, for the sum of opposite elongations is a maximum + 120°
from the apogee rather than 180° where it would in principle be 2n, since in the
apsidal line the opposite elongations are equal. The evidence is from the first four

TABLE 3.
No. Date Ao Obs 1 Com n Modn  Date Moy
1. 132 Feb2 E 309;45° 21;15° 20;56° 19;46° Feb 1 19;50°
2. 134 Jun4 M 70; 0 —21;15 —21;18 —19;52 Jun 10 —21;20
3. 138Jun4 E 70;30 26;30 25;52 25;35 Jun 8 25;53
4. 141 Feb2M  310; 0 —26;30 —26;35 —25;15 Feb 1 —25;17
5. 134 Oct 3 M 189;15 —19; 3 —18;33 —19;35 Sep 29 —20;13
6. 135 Apr 5 E 11; 5 23;15 22,58 22;11 Apr 3 22;19
7. 130 Jul 4 E 100; S 26;15 26;29 26;14 Jul 3 26;15
8. 139 Jul 5 M 100;20 —20;15 —20;25 —19;47 Jul 8 —20;19
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elongations, now consideted as two pairs of opposite elongations, 1-4 near <= 10°
and 2-3 near 11 10°, for, taking the sums of the absolute values in each pair,
N, + N, =M, + M, = 2L15° + 26;30° = 47;45° > 2n, = 46;30°.

This truly remarkable result is interpreted as showing that the centre of the epi-
cycle is closer to the Earth at 4+ 120° from the apogee than at 180°, which means
that the path of the centre of Mercury’s epicycle about the Earth cannot be a cir-
clé, nor indeed can it be a circle about any fixed point. As we shall see, Ptolemy’s
hypothesis is designed accordingly. This is empiricism with a vengence.

What went wrong? One might guess that the problem lies with the errors in
elongations 1-4, which are all too large. But in fact there is the far greater
difficulty that the morning elongation at v 10° opposite to evening elongation 6
could not be observed because at the latitude of Alexandria Mercury has no
morning rising in Aries, that is, it is invisible all the way from evening setting to
its next evening rising. Likewise, in Libra the evening rising is nearly invisible, so
Mercury can be seen only as a morning star, and this is why Ptolemy gives only
an evening elongation at < 10° and a morning elongation at = 10°. We can
check Ptolemy’s results against the correct elongations shown in the table for his
dates according to modern theory. Since Ptolemy believes that the apsidal line
passes through < 10° and = 10°, we shall do just as he did, and double the one
visible elongation in each position. We then have for 14, 2-3, 5, and 6,

s 10°  n;, + n, = 45;1°, o10° m, +mn, =4527°,

o 10°  2n; = 44;22°, =10° 21 = 39;10°.
From this limited information, Ptolemy’s conclusion is correct, the sum of
opposite elongations is least at apogee in Libra, greater at 180° from apogee in
Aries, but greatest + 120° from apogee in Aquarius and Gemini. Hence, one
need not appeal to observational errors in the elongations in Aquarius and
Gemini to explain the foundation of Ptolemy’s theory of Mercury — although
there certainly are errors — rather, it was the misfortune of Mercury’s invisibi-
lity as a morning star in Aries where Ptolemy believed the apsidal line to lie.!2

Were it possible to observe the morning elongation in Aries and the evening
elongation in Libra, Ptolemy’s errors, both in the elongations and the location
of the apsidal line, would be apparent, as can be shown by computation. The
invisible M elongation 6" to be paired with E elongation 6 occurred 4 years
earlier on 131 Apr 4 when n,” = —25;0°, and the invisible E elongation 5 to be
paired with M elongation 5 was 4 years later on 138 Oct 4 when n,” = 21;49°.
That these differ from 5 and 6 shows that the apsidal line does not pass through
% 10° and == 10°. In any case, we now have

= 10° 1n, + n, = 451°, o 10° n, + n, = 4527°,

v 10° mn,+mn,/ =4711°, =10° N, +n, = 41;24°,
and it is obvious that the sum of 6-6 is really much greater than 1-4 and 2-3
while, as expected, 5-5" is much smaller. Hence, a further misfortune is that the
E elongation visible in Aries is so much smaller than the invisible M elongation,
which surely also contributed to the mislocation of the apsidal line. Interest-
ingly, if we take the sums of the true greatest elongations n__ , some a few days
away, we find
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<100 M, + MYy = 45,75, o 16° My + My, = 47:13°,

P 10° (Mg + Mg )pa = 47:19°, =12°-6° (5 + )., = 42;1°.
Now 1-4 and 2-3 are nowhere near equal, but 2-3 and 6-6" are about equal.
The reason is that the true apsidal line, found earlier from equal sums of
opposite elongations to pass through 8§ 14° + 4°, is nearly midway between
elongations 2-3 at 1 16° and 6-6" at < 10°. And from our recomputation of the
elongations during 12741, we find the sum of opposite elongations a maximum
of 47;30° at ¥ 10° and a minimum of 41;20° at m_10-17°, although these cannot
be observed because the morning elongation in Taurus and evening elongation
in Scorpio are invisible. In the Babylonian theory of Mercury, it is implicit that
the planet is invisible as a morning star in Aries and Taurus and as an evening
star in Libra and Scorpio, and these missing phases of Mercury were known to
Greek astronomy long before Ptolemy, for Ptolemy’s demonstration in 13.8
that his theory of Mercury accounts for them implies that they are recognized
phenomena.
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The following demonstrations, of the radius of the epicycle and the eccentrici-
ties determining distance and direction, are similar to those for Venus. A
surprising result, however, is that the eccentricity determining direction turns
out to be half, rather than twice, the eccentricity determining distance.
Considering first elongations 5 and 6 in the apsidal line, in Figure 8 letting a =
OA =R + e andb = OB = R — ¢, we have

r =asinn, = bsinn, b = a (sinn,/sinn,),

R =3(a + b), ¢ = 3(a — b).
From n, = 19;3° and n, = 23;15°, Ptolemy lets a = 120, and with small errors
finds

r=1399, b=2999, R = 10934, ¢ = 10;25.
Now consider elongations 7 and 8 at —90° from apogee, where the equation of
centre is near maximum, in Figure 9. The equation of the anomaly ¢, and
equation of centre ¢, are

¢, = 1 + M) ¢, = 1(ny — M),
so that, letting d = OC, the distance of the centre of the epicycle,
d=rfsinc, e =dsinc,.
From n, = 26;15° and n, = 20;15°, where, as before, r = 39,9, Ptolemy finds,
again with small errors,
c, = 23;15°, ¢, =30°, d=999, e =~ 512

Note that e, ~ 7¢’, meaning that the equant centre is at one-half the eccentricity
of the centre of distance. Thus, in the figure OF = 7OM and e, = e,. But
something is paradoxical, namely, that both at 180° from apogee, where ¢, =
N, and here at 90° from apogee, ¢, = 23;15°, while one would expect c, to be
larger at 180°. Likewise, the distances to the centre of the epicycle at both 180°
and at 90° from apogee are equal, that is b = d = 99;9, although one would
expect the former to be smaller.

Neither the equal angles nor the equal distances are consistent with motion
on a circle, or at least with a circle of fixed centre. Since both the distances
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and directions of the centre of the epicycle are certain, the problem is this:
where at each position of the centre of the epicycle is the centre of the eccentric
circle on which it moves? Here is Ptolemy’s solution after the hypothesis —
the motivation for which we shall consider below — has been derived. As
shown in Figure 10, when the centre of the epicycle Cis +90° from the apogee
on line EC, the centre of the eccentric N is F90° from the apogee on line
MK, that is, at an equal angle on the other side of the apsidal line. We wish
to find the distances R = NC and e; = NM. Becuase angle NME = 90°
and angle EMC ~ 90° (actually ~87°), the distance NM + MC is nearly a
straight line equal to NC, thatis, R = d + e,. Now, we let KM = AM = R,
and since MC = d, therefore NC ~ (KM + MC) and NM ~ (KM — MC),
that is,
R~ 3R + d), e ~ 3R — d).
It has been found that R’ = 109;34 and d = 99,9, and thus
R ~ 104;22, e, ~ 5;12.
But we earlier found that e, = e, & 5;12, and thus all three eccentricities, which
we now call e, are equal. Finally, we change to units of R = 60 by dividing R, ,
and e by 104;22/60 = 1;44,22 to find
R =60, e~ 30, r=22;30.

The hypothesis that underlies the preceding demonstrations is shown in
Figure 11. From the Earth at O, an eccentricity e defines the equant centre E
and a double eccentricity 2e the centre M of a small circle, also of radius e, that
therefore passes through E. Now, the centre of the eccentric N moves in the
negative direction, of decreasing longitude, on the small circle through the mean
eccentric anomaly —« while the centre of the epicycle C moves in the positive
direction, of increasing longitude, on the eccentric uniformly through + i with
respect to E, both measured from the direction of the apogee. We now test the
hypothesis and the parameters just derived against Ptolemy’s observations. For
apogee and perigee, n = ¢, = sin~!(r/OC):
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FiG. 11.
K = 0% OC = R + 3e = 69, n = 19;2°,  obs.n, = 19;3°
k=180 OC=R—e =75, n = 23;15°, obs.n, = 23;15°.
For ¥ = +90° we must also find the equation of centre ¢, and thenn = ¢, + c_:

K= -9 OC=xRE —e=1751, ¢, =31° c, = 2315°,
ng = 26;16°, obs. m, = 26;15°, m, = 20;14°, obs. n, = 20;15°.
The sum of the opposite elongations, n, + M, = 2¢ = 46;30° agrees exactly
with the observed 1, + n,.

The calculation for k = =+ 120° where the sum of opposite elongations is a
maximum, shown in Figure 12 for +120°, is more complicated and Ptolemy
goes through it in detail. The test is very important for the elongations at +120°
have not been used in any of the preceding derivations of eccentricities, and thus
if they are correctly produced, the hypothesis must be judged a great success.
Ptolemy first shows that at € = +120°, radius NC = R passes through E and
forms in the small circle an equilateral triangle MNE of sides e. This is a
fundamental property — indeed, the fundamental property — of the hypothesis
regardless of the radius of the small circle, and, as we shall see, is essential for
understanding its original motivation. As a result, EC = R — e and:

K = +120° OC = 55;33,38 ~ 55;34, ¢, = 2;41°, ¢, = 23,53°,
Mg = 26;34°, obs. n, = 26;30°, m, = 21;12°, obs. n, = 21;15°
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The discrepancies of 0;4° and 0;3° are remarkably small, and the sum of the
opposite elongations, n; + 1, = 2c, = 47,46°,is nearly equal to the observed n,
+ m, = 47;45°. Since these elongations were not used in deriving the eccentri-
cities, the hypothesis, by what appears to be sheer luck, works very well indeed.

Or was it really luck? We have thus far reviewed Ptolemy’s exposition of the
derivation of Mercury’s parameters, which is also to some degree a derivation
or confirmation of its hypothesis. However, it is not necessarily the way he
arrived at the hypothesis or parameters in the first place, as the fortunate
outcome of the previous test would seem to suggest. Let us therefore consider
another approach. We remarked earlier that a pre-Ptolemaic value of 22° for
Mercury’s greatest elongation gives Ptolemy’s radius of the epicycle, that is,
where R = 60, r = R sin 22° = 22;28,35 ~ 22;30. If r is taken as known, then
the greatest elongations m; and m,, immediately give the equation of the
anomaly ¢, = 3(n; + m,,) and the distance of the centre of the epicycle OC =
r/sin ¢, where R = 60. Hence, for the four positions of the epicycle, expressed as
K, we have:

K MNe+My € ocC

0° 2-19; 3° 19; 3° 68,56 ~ 69 a
90 46,30 23;15 57 d
120 47,45 23;52,30  55;35
180 2-23;15 23,15 57 b
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FiG. 13.

Not surprisingly, we have reached almost exactly the distances of Ptolemy’s
hypothesis and parameters. Assuming that the observed elongations were more
or less as reported — a question still to be considered -— it is evident that a prior
assumption of the radius of the epicycle provides a great advantage in an initial
analysis. :

The distances, now known, are quite suggestive. We have already drawn
attention to the equilateral triangle in the small circle at k = =+ 120° regardless
of the radius of the circle. This cannot be an accident, but, as we have noted, is
the fundamental property upon which the hypothesis was designed in the first
place in order to account for the maximum sum of elongations at or near K =
+120° by bringing the epicycle closer to the Earth. And from the equilateral
triangle and the distance at k = +120°, the radius of the small circle may be
derived, so it no longer appears so lucky that the hypothesis produces the
correct elongations at K = +120°. Let us first briefly review the derivations of e,
and e, of Figures 8-9, but now in the new units where R = 60. Atk = 0° and
= 180°,

a=69, b=57, R=%a+b)=263 € =3Ha—b) =6
Next, at K = —90°, as before ¢, = 23;15° and ¢, = 3;0°, so that
d=751, e =dsinc,x3=73¢, e,=¢ —e =3.
Now consider the configuration for k = 120° in Figure 13 in which NC = R =
60, but neither the radius of the small circle nor the eccentricity of its centre are
yet known; that is, it is not yet known whether M in Figure 13 coincides with M
in Figures 8-9. In triangle OEC, from OC = 55;35 and OF = e, = 3, we find
EC = (OC?* + OE* — 20C - OE cos 120°): = 57;7,32 ~ 57,
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and in equilateral triangle NME,

NE =R —-EC=3, e =e, =3.
But it has already been shown that e, = e, = 3, and thus all three eccentricities
are equal.

This reconstruction of the preliminary analysis underlying Ptolemy’s demon-
strations accounts, not only for all the parameters, but also for the lucky
coincidence that the hypothesis works so well at k = =+ 120°. But it does not by
itself explain the invention of the hypothesis. Since, as we have seen, the prior
assumption of the radius of the epicycle along with the observed elongations
gives the distances of the centre of the epicycle, Ptolemy’s essential task was to
develop an hypothesis to account for the distances, specifically, the smaller
distances at, or perhaps originally just near, +120° rather than 180°. The
problem is similar to the second inequality of the lunar theory in which the
centre of the epicycle is farthest from the Earth at conjunction and opposition,
and closest at mean quadrature, that is, at +90° of mean elongation. If, as it
appears, the hypothesis of Mercury in the Canobic inscription did not differ from
that of the other planets, then the hypothesis in the A/magest was developed
after the lunar theory, which therefore served as an example for such a variation
of distance.

In working out the hypothesis, I assume that it was precisely the equilateral
triangle in the small circle at + 120° that — when he thought of it — convinced
Ptolemy that his hypothesis was correct and further, that the maximum sums of
elongations really must take place at +120°, however ambiguous the observa-
tional evidence may originally have been. A necessary condition for the
hypothesis is therefore (Figure 13) that the small circle pass through F—
meaning that the radius of the circle e, must be equal to e,, which was
independently found (Figures 8-9) from e, = ¢’ — ¢, although not necessarily
to e, — for otherwise NC and EC cannot coincide except in the apsidal line and
there can be no equilateral triangle. And this in turn requires thate’ = (e, + e,)
> e, thatis, that OM > OE, which is why for Mercury, and Mercury alone, the
equant centre must lie closer to the Earth than the centre of distance. These are
very tight constraints on the eccentricities. We shall presently see what happens
if these conditions are violated.

It has often been pointed out that the minimum distance from the Earth
computed from the hypothesis does not take place exactly at +120°, but at
about 4120;28,20°, which is still very, very close.!? In fact, exactly where the
minimum occurs depends upon the eccentricities, something Ptolemy probably
knew, for in the later Planetary hypotheses, where e, = 3 and e, = e, = 2;30, it
is at about 4 124;6,5°, a notable change of 4°.14 Hence, probably even in his
original analysis, it was not the exact locations of the maximum elongations,
which observations could not distinguish that closely in any case, but the fact
that they were close to +120° that led Ptolemy to develop the hypothesis in
which, perhaps because of its elegance, the coincidence of NC and EC and the
equilateral triangle in the small circle at +120° determined, not only the
hypothesis, but also his interpretation of exactly where the maximum sums of
elongations are located. Ptolemy was empirical up to a point, but where
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observation was inadequate, and in precisely locating the maximum sums of
elongations it doubtless was, he had no alternative but to turn to theory,
adopting what seemed to him the most simple, reasonable or elegant hypothesis
(whatever such criteria may mean) that made sense out of less than certain
observations. One must admit that the hypothesis for Mercury is nothing if not
ingenious, and Ptolemy himself must have considered it the solution to a
problem of truly formidable difficulty.

What then of the empirical foundation of the demonstrations, the obser-
vations? Were they altered, corrected, in light of the completed theory? I believe
that some, perhaps most, were. This was not done by computation for the time
of the observations, for as the table of the observations shows, the planet was
not then at true greatest elongation. Rather, the correction was a sort of
idealization, as we saw earlier for Venus; that is, if the planet were at true
greatest elongation at the specific value of k, then its theoretical elongation is
known and the observation can be adjusted accordingly. And again, this
explains why Ptolemy always calls the observations “greatest elongations” even
though at the time of each observation the elongation was less than maximum.
We would probably call this an improper procedure, but I think Ptolemy looked
on it more as a kind of interpolation, as a way of making the best out of an
unavoidable situation, namely, that the planet is not at greatest elongation
when the mean Sun is in the positions required for the demonstrations. In any
case, the corrections to the elongations do not affect the fundamental obser-
vation that the greatest elongations at k = +120° exceed those at 180°, the
principle motivation of the hypothesis, for this follows, not from any errors or
alterations in the observations, but from the invisibility of Mercury’s morning
elongations in Aries where Ptolemy believed its apsidal line to be located. For as
we have seen, even the correct elongations by modern theory show the same
pattern Ptolemy describes: the least morning elongation in Libra, a larger
evening elongation in Aries, and a still larger sum of elongations in Aquarius
and Gemini, while the largest sum in Taurus and smallest sum in Scorpio cannot
be observed owing to visibility conditions.

What Ptolemy observed, and how much the observations were adjusted is a
difficult question. If we concede, as I believe we must, that he could not have
observed some of the reported elongations— which means that even our
reconstruction of his preliminary analysis, based upon corrected elongations, is
not exactly preliminary — he still had to start somewhere. It would be interest-
ing if the true greatest elongations, n___ in the table, agreed more or less with his
reports, but except for 2, 7, and 8 they do not. Since the errors of the corrected
elongations amount to as much as 13° and several are about 1°, a reasonable
guess might be that Ptolemy’s adjustments of whatever he observed were of the
order of 1°, leaving residual errors in the observations of +° or less. But precisely
what was the motivation and effect of such corrections? One reason of course is
the adjustment to the theoretical true greatest elongation at each location of the
centre of the epicycle. But this cannot be done until the theoretical values are
known, which themselves depend upon the correction. In fact there is more to
the adjustments, and it is perhaps the most interesting consequence of the
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hypothesis for Mercury. Since the hypothesis, derived from the pattern of the
elongations, must be prior to the corrections, and since the radius of the epicycle
depends upon its distance —and seems already to have been provisionally
established — the corrections must affect principally the eccentricities that
determine distance. And what motivates, indeed, determines the corrections are
the constraints imposed upon the eccentricities by the hypothesis, namely, that
e, = e,and ¢’ = (e, + e,) > e,, without which NC and EC cannot coincide and
form the equilateral triangle NME in the small circle.

Suppose we repeat the preliminary analysis using the true greatest elonga-
tions, n_, in the table (taking 2-3 for k = 120°), and letting r = 22;30, just as
we did for the corrected elongations and just as Ptolemy may once have done.
The elongations and distances are:

K Mg + My c, ocC
0° 2-20;13° 20;13° 65,7 a
90 46;34 23;17 56;55 d
120 47;13 23;36,30 56;11
180 2-22;19 22;19 59;15 b

Note that n, + m,, is greater at 120° than at 180°, but it is also greater at 90°,
which has curious consequences. At k¥ = 90°, ¢, = 2;58°. From these distances
and c,, we find

' R =1(a + b) = 6211, ¢ =a — b) =2;56,

e, =dsinc, = 2,57, e, =e —e = —0;l.

What this result, that e, is negative, implies is that in Figure 13 OM < OE and
thus M would lie between O and E, which makes it impossible for NC and EC to
coincide and violates the constraints of the hypothesis. There is no point in
continuing the demonstration, for there can be no equilateral triangle in the
small circle. We can perform the same derivation using the elongations from
modern theory for the dates of Ptolemy’s observations. We get a bit farther, for
€ ~ 3;46, e, ~ 3;14, and e, = 0,32, so OM > OE. However, taking the
configuration for k = 120° in the small circle, we find OC = 58;15, EC = 59,56,
and e, = 0;4, which differs from e, = 0;32 just found. So this too is impossible.
With no other evidence to go by —and Ptolemy had no evidence beside the
consistency of this demonstration — these two failures may well be interpreted
as proof that the observed elongations are faulty and in need of correction.
Ptolemy’s choice was therefore to accuse either the hypothesis or the accuracy
of the elongations, for both could not be right. And since the hypothesis
represented the distribution of the elongations correctly — as indeed it was
invented to account for this very distribution — it is more than understandable
that, rather than reject the otherwise admirable, and very ingenious, hypothesis,
he would decide that the observed elongations contained errors that required
corrections.

It therefore appears from this analysis that Ptolemy’s adjustments of the
elongations were made under the constraints of the hypothesis for the purpose
of making the demonstration of the eccentricities work consistently with the
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TABLE 4.

No. Date Ao Obs 7 Com 1 Mod n Date Mhna
1. —261 Feb 12 M 318;10° —25;50° —26;21° -25;23° Feb 15 —25;40°
2. —261 Apr 25 E 29;30 24;10 23,57 23;46 Apr 28 24; 1
3. —256 May 28 E 62;50 26;30 25;59 25;29 May 26 25;33
4, —261 Aug 23 E 147,50 21;40 22:20 23,57 Aug 25 24; 3
5. —236Oct 30 M 215;10 -21; 0 —-20;11 —20;41 Oct 27 —21; 4
6. —244 NovI9M  234;50 —22:30 —22; 4 —21;59 Nov 20 -22; 3

hypothesis, the only check he had on the accuracy of the elongations. And
further, it is evident where he began, for from the true greatest elongations n___
atk = —90°in the table, 1, . = 26;15°and n, ., = —20;19°, nearly identical
to Ptolemy’s reports, it follows that ¢, ~ 23;15° and ¢, & 3°, from which OC ~
57 and e, ~ 3, all of which agree with Ptolemy’s demonstration. In addition,
just as was done for Venus, the precise location of the apsidal line was taken as
90° for elongations 7 and 8, and this along with the hypothesis gave the precise
locations of the maximum sums of elongations +120° from the apogee. The
adjustments of the remaining elongations were directed at finding e’ > e, and e,
= e, where e, = ¢’ — e,. Since the observations were made near the horizon
with unfavourable conditions for accurate measurement and uncertainty about
the longitudes of the, sometimes quite distant, reference stars — all of which
was known to Ptolemy— adjustments of about 1° to conform with the
constraints of a hypothesis that correctly accounted for the distribution and
relative sizes of the elongations may not have seemed unreasonable. Indeed, it
may have seemed, not only correct, but inevitable. Perhaps the analogy of the
two equal eccentricities for each of the other planets led him to conclude that
ideally e, and e, were both equal to e, = 3, that all three eccentricities were
equal, and once this decision was made the adjustment of the elongations was
straightforward. This explains in particular the coincidence that n, = 3(n, +
My, forif e, = e, = e,, thenat bothx = +90° and k = 180°, the distance OC ~
R — e, and also why Ptolemy chose to demonstrate e, from the distance at k =
—90° rather than, as one might expect, K = =+ 120°. Later, in the Planetary
hypotheses Ptolemy reduced e, and e, —they must be equal —to 2;30 while
leaving e, at 3, that is, the eccentricity that can be derived from elongations 7
and 8 at K = —90° without any adjustment. The alteration of e, and e, may
have depended upon further observations — Ptolemy says that corrections to
the Almagest are based upon continuous observation — or a new study and
refined adjustment of the original observations.

We may now take up a difficult section of Ptolemy’s treatment of Mercury
previously deferred, namely, the demonstration in 9.7 from ancient obser-
vations that 400 years earlier the apsidal line passed through = 6° and <r 6°, 4°
less than in his own time. The method is essentially the same as that used before,
but since Ptolemy does not have two pairs of equal opposite elongations, he uses
six observations, finding the locations of equal elongations by interpolation.
The observations are all of distances of Mercury from fixed stars: 1-4, dated in
the Calendar of Dionysius, were presumably made in Alexandria, and 5-6 dated
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in the “Chaldaean Calendar”, that is, in the Seleucid Era (—310 Apr) with
Macedonian month names substituted for Babylonian, were made in Babylon.
The observations are shown in Table 4 arranged as the preceding tables of
observations of Venus and Mercury. The observations themselves raise interest-
ing questions. All are about as close to true greatest elongation as Ptolemy’s
own, but how did Ptolemy know this? Did he determine it by computation or
were they already designated as such? Three are from Era Dionysius 23/4
(—261), which suggests either considerable observation of Mercury at that time
or a specific interest in greatest elongations. The Babylonian observations,
however, were of distances from “normal stars™ and could not have specified
greatest elongation, so Ptolemy must have gone through some larger list,
computing the elongations from the mean Sun and then selecting these two. My
guess is that he did the same with the Alexandrian observations which likewise
were not specifically of greatest elongations.

The observations are used in two groups, 1-3 and 4-6. In each Ptolemy takes
the first elongation directly, and interpolates between the next two to find
the location of an equal, opposite elongation. The apsidal line then lies mid-
way between the first and the interpolated location. Thus, taking 1-3, we wish
to find the location of an elongation n,” equal and opposite to 1, = —253°.
Now,

An32 =M; — N, = 2%0: Anu =-nN—-—M = 1%07
Ahgy = Ry — kg, = 333°,
and by linear interpolation,

An 5 0 : o — A40
ARy = Hﬁ AR, = 5. 3340 = 23;48,34° ~ 24°.

The location of the elongation n,” equal to 7, is
Aor = Ay + AR, = P 293° + 24° = 5 233°,

andsince X, = == 18¢°, the point midway between s at « 53°. Next, we consider
n, equal and opposite ton, = 213° and interpolate between n, and 7, that is,
An, = 13°, An, = 3, AX®65 = 193°,

An 4 ° ) o .~ Qo
AXGS4,=H:-:.AXOSS =§.19% = 8:44,26° ~ 9°,

and the location of n,” equal to n, is
Moy = Ags + Ahgg, = M 58° + 9° = m_ 14¢°.

Since Xo s = & 273°, the point midway between is == 6°, and since the other
elongations showed v 53° & <r 6°, the apsidal line is directed to == 6° and
o 6°. The earliest of these observations (1) is in Era Nabonassar 486 and the
latest of Ptolemy’s observations (4) is from Era Nabonassar 888, an interval of
just over 400 years in which the apsidal line moved 4° from = 6° to = 10°, or 1°
in 100 years, which is exactly the rate of the motion of the fixed stars. Hence the
apsidal line of Mercury is sidereally fixed and, Ptolemy concludes, since ‘“‘the
phenomena associated with the other planets individually fit”’ this assumption,

the apsidal lines of all the planets are taken to be sidereally fixed.
This demonstration presents grave difficulties, for it is entirely invalidated by
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errors in the observations, the most serious of which are about +1°in 3 and no
less than —23° in 4, which are fatal. Considering absolute values: (1) the
interpolation between 2 and 3 is valid only if n, > n,, but in fact they are about
equal and by computation from Ptolemy’s theory n, > n,; (2) the interpolation
between 5 and 6 is valid only if n, > n,, butin factn, > > n,and by computation
from Ptolemy’s theory they are about equal. There is no solution to these
problems; the demonstration is invalid and that is that. Elongation 4 is
particularly disturbing. The report is that Mercury “was a little more than 3° in
advance [west] of Spica, according to Hipparchus’s reckoning’’, meaning that
Ptolemy depended upon Hipparchus’s reduction, and indeed all the obser-
vations probably came from Hipparchus’s compilation of earlier observations.
For 400 years before his time, Ptolemy takes Spica to be at My 223° and
subtracts 3+° to place Mercury at MY 195°. Correctly, by modern theory, the
longitude of Spica was M 22;20° and of Mercury Ty 21;14°, so Mercury was
only 1;6° west of Spica, nowhere near 3°. Further, Ptolemy computes the mean
Sun to be at £, 272° while correctly it was at §, 27;17°, and the correct
elongation was thus 23;57° instead of Ptolemy’s 213°, a difference of nearly 21°.
That these inaccuracies lead to the sensible and consistent conclusion that the
apsidal line has moved 4° in 400 years, exactly the motion of the fixed stars,
suggests that some of the observations have been adjusted in accordance with
this assumption.

But a further problem with Ptolemy’s demonstration, obviously enough, is
that since he has an error of about —40° in the direction of the apsidal line at his
own time, it is difficult to attach much significance to a difference of 4° in 400
years. And to make matters even more confusing, it appears as though in the
Canobic inscription he had placed the apogee in his own time at = 6°, the very
location he gives it here for 400 years earlier.' And yet, despite all these
problems, his conclusion, that the apsidal line is sidereally fixed, is characteristi-
cally the best guess that could have been made at his time even with more
accurate observations. For in fact, in 400 years Mercury’s apsidal line moves
6;12° with respect to the equinoxes of which 5;32° is due to the precession and
only 0;40° a movement with respect to the fixed stars, which could not possibly
be distinguished by interpolation for the locations of equal and opposite
elongations.

Ptolemy essentially had only two choices with regard to the motion of apsidal
lines, whether they were sidereally or tropically fixed, for this was surely the only
question he asked and the only question he could hope to answer. The proper
motions of the planetary apsidal lines with respect to the fixed stars are far too
slow to be detected from only a few hundred years of observations, even suitable
and accurate observations which Ptolemy did not have, and Copernicus’s
attempts of fourteen hundred years later are still hopelessly flawed by errors of
observation both ancient and modern. Ptolemy doubtless used the early
elongations of Mercury because they were the only early observations he had
that could be applied to the problem at all. For the superior planets oppositions
would be required in order to derive the directions of the apsidal lines at the
early epoch by the same demonstrations Ptolemy used for his own time. But
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since he does not use early observations of oppositions, where they would be the
most appropriate, for correcting the mean motions of the superior planets, it is
certain that he had no such early observations. And for Venus he evidently
lacked early observations of anything even close to symmetrical greatest
elongations, which is understandable considering the unfavourable distribution
of Venus’s greatest elongations. Hence, under such unsatisfactory conditions,
on the basis of little more than inaccurate observations of the least visible planet
he made the best guess he could. That is, if all that could be done was to
distinguish whether the apsidal lines were sidereally or troplcally fixed, then
Ptolemy evidently made the correct choice.
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