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ABSTRACT

The astronomical models of Ptolemy in the 2nd century CE set the stage for how astronomers
would predict the motions of the sun, moon, and planets for the next 1500 years. Despite producing
accurate results for its period, Ptolemy’s astronomical models became obsolete over time due to
minor errors in the base variables, astronomical effects not known to him, and ultimately a model
that was fundamentally wrong. Accordingly, using Ptolemy’s original tables and models today
would result in wildly inaccurate results. Thus, attempting to understand how Ptolemy’s models
would be used by astronomers in period becomes difficult as we cannot directly apply them to
present day.

In response, this paper explores Ptolemy’s methods for the development of his model and
reproduces them using observations from the present, thereby bringing the Ptolemaic model fully
into the modern era. To do so, I walk through Ptolemy’s methodology, adjusting the geometry and
using more expedient modern math where necessary, in order to define a new astronomical epoch.
This is a date and time for which the positions of the sun, moon, and planets are all determined
and from which, positions in the past or future can then be calculated. In other words, it is t = 0.
In addition, I have recomputed all necessary tables to use for prediction from the epoch, which are
included in this work.
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CHAPTER 1

Introduction

One of the requirements for making astronomical predictions is a point in time that serves as the
starting point, for which the position of the sun, moon, and planets are established1. From this time
and set of positions, and by knowing the way each object moves, their position can be predicted
either forwards and backwards in time. This starting date, in combination with the position of an
object, is known in astronomy as the epoch. This concept is still used modern astronomy, although
modern astronomers generally use the year 2000 as their epoch date.

In the 2nd century CE, Ptolemy wrote the Almagest. In it, he laid the foundation of the geo-
centric model that would dominate for over a thousand years. For the beginning of his epoch, he
chose the first day of the year in which the Nabonassar reign began (747 BCE)2. Ptolemy did not
determine the starting position of each body on that date by using historical records from that time,
but rather found the position in a time contemporary to himself and then reverse calculated the
positions for the start of the epoch.

Ptolemy operated under an assumption inherited from the Platonic philosophers that all objects
must move in perfect circles with uniform (i.e., constant) speed. This obviously contradicted
simple observation which demonstrates that celestial bodies such as the sun, moon, and planets, do
not have a constant speed with respect to the background stars. Indeed, the planets can even appear
to change their direction. To explain this, Ptolemy built on the work of Greek astronomers before
him, describing a complex system in which these celestial objects were carried on the surface
of crystalline spheres rotating within one another at constant speeds. By carefully arranging the
placement, size, speed and direction of rotation of these spheres, Ptolemy was able to create a
model that mimicked the motion of these bodies.

These models were ultimately built on numerous parameters, observations, and assumptions.

1While a separate date could be chosen for each celestial object, in practice, it is simpler to use the same date for
all.

2This was an unusual choice since the primary table used to calculate forward from this date only had values for
up to 810 years meaning additional math would be required by 63 CE which was actually prior to Ptolemy’s own life.
As such, it is likely Ptolemy chose these dates based on the work of prior Greek astronomers. In his later work, the
Handy Tables, he instead created an epoch date beginning in 323 BCE [5].
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While Ptolemy does an excellent job of justifying each one, he was still limited by the observational
tools of his day. Furthermore, there are also subtle astronomical effects that only become apparent
over the long term, of which Ptolemy was entirely unaware. Thus, while Ptolemy’s models worked
reasonably well during his lifetime, astronomers were already finding problems with his work a
few centuries later3 as the minor errors compounded over these intervals. To try to make use of his
work directly today would return results that are wildly out of line with reality. This makes trying
to understand the accuracy of models and how astronomers in period may have made use of them
difficult.

To make the models usable in present day, they need to be brought into the present, creating a
modern epoch from which we can use the models without them being wildly out of line. To that
end, my goal is to create a new epoch suitable for use within the Society for Creative Anachronism
(SCA). For its starting point, I have chosen the date the SCA was founded: May 1, 1966.

Before diving into the models, we should fist take some time to explore some of the concepts
that will be common in all the models.

1.1 On the Celestial Sphere

When observing the sky, it appears as a giant sphere around us with half of that sphere always
being obscured by virtue of being beneath the horizon. This is referred to as the celestial sphere4

and the stars appear to be fixed on this sphere, rotating with it. However, there are seven objects
which appear to move with respect to the stars: the sun, moon, and five naked eye planets. The
purpose of the Almagest is to model the movement of each of these objects as well as the stars.

In addition to these physical objects, astronomers also consider several more that are more
abstract. The first of these is the celestial poles. These are simply the points about which the
celestial sphere seems to rotate. They lie directly above the earth’s own poles. Similarly, the
celestial sphere also has a celestial equator which lies above earth’s as well.

Each of the objects that moves with respect to the stars traces out a path along the celestial
sphere. But because the sun is such an important object, its path deserves special attention. It is
given a special title and is known as the ecliptic.

Both the celestial equator and ecliptic are a special type of circle known as a great circle
because their centers are coincident with the center of the celestial sphere and they have the same
diameter. In contrast, we can imagine any number of small circles for which they are a slice of

3For example, in the ninth century, Al-Battani revsed Ptolemy’s values for the length of the year and discovered
that the position of the solar apogee was changing [13]. In the 12th century, Jabir ibn Aflah wrote Islah al-Magisti
(Correction of the Almagest) which offered both a philosophical critique as well as a mathematical one [2].

4Understanding the celestial sphere and getting more familiar with this terminology is the focus of my class, De
Sphaera.
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the sphere that does not go through the center and are therefore smaller in diameter. Any line of
latitude aside from the equator would be an example of a small circle.

The above points and circles on the sphere are all ones that are fixed. However, there are several
others that only exist in the context of an observer on earth. The first of these is the zenith, which
is a point straight up for any observer. Throughout the course of the day, this point traces a small
circle around the celestial sphere and 90° from that point at any time is the observer’s horizon
which is a great circle. If we draw another great circle between any point on the horizon and the
zenith, this is known as an altitude circle, so named because when measuring the angle of an
object above the observer’s horizon, known as its altitude, it would be measured along this circle.
A special case of an altitude circle is the meridian which is the great circle drawn through the
observer’s zenith and the points directly north and south on the horizon.

1.2 On Celestial Coordinates

The coordinate system used throughout the Almagest to describe the apparent position of objects
on the celestial sphere is the ecliptic coordinate system. This system is named because it uses,
as a fundamental plane, the ecliptic which is the apparent path the sun takes across the celestial
sphere throughout the year. Ecliptic latitude is measured up and down from this line with positive
values above the ecliptic (northwards) and negative values below (southwards). Ecliptic longitude
is measured left and right along the ecliptic with the position of the sun at the vernal (spring)
equinox as 0° and proceeding counter-clockwise when viewed from above or right to left when
viewed from inside the celestial sphere.

In Ptolemy’s time, the vernal equinox was located at the beginning of the constellation of Aries.
However, due to axial precession, this has changed and today the vernal equinox is located near
the beginning of Pisces. As such, the sign the sun is in on a given date has shifted too, making
the modern zodiacal constellation in which an object would appear be off by approximately one
month. This is summarized in the table below:

Ecliptic Longitude Classic Sign Modern Sign
0°− 30° Aries Pisces

30°− 60° Taurus Aries

60°− 90° Gemini Taurus

90°− 120° Cancer Gemini

120°− 150° Leo Cancer

150°− 180° Virgo Leo

180°− 210° Libra Virgo
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210°− 240° Scorpio Libra

240°− 270° Sagittarius Scorpio

270°− 300° Capricorn Sagittarius

300°− 330° Aquarius Capricorn

330°− 360° Pisces Aquarius

1.3 Eccentric vs Epicyclic Models

In the Almagest, Ptolemy lays out two main models to help account for the irregular motion of
celestial objects: the eccentric and the epicyclic models. This is initially done in Book III Chapter
3 (abbreviated III.3) for the sun, wherein Ptolemy demonstrates that the two models produce the
same results so long as certain parameters are equal. He later demonstrates this again in Book IV
for the moon for the the simple model which he later replaces.

The first of these models is the eccentric model. This model uses a single sphere for the motion
of the object which is offset from the earth as shown in Figure 1.1. In this figure, the observer is
on earth at E and the sun travels on circle APO which has center C. This offset circle is referred
to as an eccentre. This naturally creates a point at which the object would be closest to the earth,
known as perigee at P , and one at which is most distant, known as apogee at A. The effect this has
for a viewer on earth is that it causes the apparent motion of the object to vary, seeming to move
faster near perigee and more slowly near apogee, while the object maintains a consistent angular
speed about this circle if viewed from C.

The specifics of how this works are illustrated in Figure 1.1. To understand, consider an object
at O. From the point of view of the observer on earth, the object’s apparent position on the ecliptic
is at O1.
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Figure 1.1: An illustration of the eccentric model as it existed in Ptolemy’s time. Not to scale.

Next, consider what would happen if we moved the eccentre such that its center, C, was moved
to be coincident with the earth and the center of the ecliptic at E. If that happened, the object
would still maintain its orientation in relation to C. I’ve sketched in a dotted-dashed line from C

to O to illustrate that orientation. I’ve then reproduced it, starting from E to show where the object
would instead appear on the ecliptic: at point O2.

Since ecliptic longitude is measured counter-clockwise, this means that this offset from the
earth makes the object appear ahead of where it should be were the eccentre not offset. The
opposite is true for an object on the other side of the line between the apogee and perigee. In this
case the object appears to lag behind the position it would were the eccentre centered on the earth.
The motion that the object would have were the eccentre not offset is known as the mean (average)
motion, and the variance from the mean is known as the anomaly or anomalistic motion.

This cyclic pattern of getting ahead and falling behind the mean motion is used to explain
why celestial objects appear to vary their speed while maintaining a constant motion on their own
circles. However, it cannot account for more complicated motions such as the apparent reversal in
direction known as retrograde motion that planets exhibit.

For such motions, Ptolemy instead relies upon the epicyclic model which can account for the
simple anomalistic motion as well. In this model, the object travels on two spheres. The first,
which in Figure 1.2 has M on its circumference, is known as a deferent, and it carries a second
sphere, shown by circle APO, centered on M , and on whose surface the object rests. This second
sphere is known as the epicycle. As the epicycle rotates about M , carrying an object, it again
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naturally creates an apogee and perigee, labeled A and P respectively.

Figure 1.2: An illustration of the epicyclic model.

In this model, both the deferent and epicycle rotate with constant speeds, but the motion of the
epicycle causes the objects speed to appear to vary. We can understand why by considering Figure
1.2 when the object is at O. In this case, the apparent position of the object along the ecliptic is at
O1 which lags behind the position the object would appear if there were no epicycle and the object
were carried directly on the deferent at M . Without the epicycle the object would instead appear at
M1. The opposite would be true if the epicycle rotated carrying the object to the other side of the
epicycle. At apogee and perigee, there is no apparent difference in position due to the epicycle.

As the epicycle rotates, carrying the object on its surface, there are times when the motion of
the object will be in the same direction as the deferent, and at other times opposed. For example,
if the deferent and epicycle were both rotating counter-clockwise in Figure 1.2, then the epicycle
would be making the object appear to move faster near perigee and more slowly near apogee. If
the rotation of the epicycle were instead clockwise, the opposite would be true: the epicycle would
make the object appear to move more slowly near perigee and faster near apogee.

Throughout the Almagest, Ptolemy uses variations on these models, adjusting parameters of
the sizes, rotational speeds and rotational directions of the various circles, as well as occasionally
combining the two models for especially challenging motions. However, because the models are
comprised of discrete parts, these complex motions can be broken down into simpler motions to
make computation far easier.
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1.4 On Ptolemy’s Geometry

In this paper, I have done my best to reproduce Ptolemy’s methods, but have simplified the proce-
dures to do so by using modern math where appropriate. One example is that I have displayed all
numbers in decimal form as opposed to the base 60 sexigesimal system used by Ptolemy. When
doing so, I often give a result that may seem like a ridiculous number of decimals which would
certainly exceed the number of significant digits. However, this reflects Ptolemy’s values which are
frequently expressed to the 60−2 place (equivalent of 0.00027). Clearly, the concept of significant
figures had not yet been developed as Ptolemy regularly plays fast and loose with the number of
places given, frequently resulting in compounding rounding errors in his calculations.

In addition, the field of trigonometry (particularly, sin, cos, and tan functions) was not invented
until several hundred years after Ptolemy’s death. This meant that simple problems of solving right
triangles, which we would do using trigonometric functions in a few steps, required Ptolemy to use
roundabout geometric solutions. While these techniques are elegant, teaching them so as to be able
to reproduce Ptolemy’s methods exactly is beyond the scope of this paper. Rather, in this paper, I
have used some modern mathematical techniques to more quickly derive the same results.

That being said, there are certain conventions Ptolemy uses which are not so easily hidden. As
such, we should briefly explore some of them5.

1.4.1 Circles

Circles frequently come up when working with the Almagest since Ptolemy considers objects mov-
ing on the surfaces of rotating spheres. Thus, the path they make as the sphere spins traces out a
circle. Determining the size of these spheres will be a major component of Ptolemy’s work. In
addition, when solving right triangles, his methodology involves inscribing the triangle inside a
circle for which there is no physical analogue. Ptolemy can then use theorems about circles to
solve the triangles in the absence of trigonometry.

Since the true size of the elements within the circles is not something Ptolemy starts out know-
ing, Ptolemy regularly assigns an arbitrary radius to them of 60p where the p stands for ”parts”.
These units are only consistent within the context of the circle for which they are defined. However,
by finding the length of a segment in two different contexts (i.e., in two differently sized circles),
he is able to switch between them. We will see this in particular in the section on the lunar models.

There are a few important mathematical concepts and theorems that will be important to know.
The first is the concept of a chord. A chord is a line drawn between two points on the perimeter of

5I have a comprehensive class on the mathematical techniques used: Mathematics of the Almagest. A copy of the
class handout which explores the following concepts in detail with worked examples and sample problems is available
at https://b3r.org/files/Mathematics-of-the-Almagest-by-Chesey.pdf
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a circle that cuts through the circle itself. The length of this chord will have a direct relationship
to the arc defined by the same two points. When a triangle is inscribed in a circle, it creates three
chords, thus allowing Ptolemy to use relationships and theorems about them. In the Almagest,
Ptolemy spends Book I, Chapter 10 showing how to calculate the length of a chord for a given
central angle (or arc). To avoid having to repeat such calculations every time this relationship is
needed, Ptolemy calculates the length of a chord for increments of 1

2
° and records them in a table

in Chapter 11. However, it frequently happens that the values that get input into this table are not
in increments of 1

2
° requiring interpolation. Thus, for the purposes of this paper, I have avoided

making use of these tables and instead determine the chord length from the central angle/arc (or
vice versa) using trigonometry.

Second, if a right triangle is inscribed in a circle, its hypotenuse will be the diameter and the
center of the hypotenuse the midpoint the center of the circle. Since Ptolemy’s circles have a radius
of 60p, this will mean that any circles he creates for the purposes of solving triangles will have a
diameter, and thus the hypotenuse of the triangle, of 120p.

Third, Ptolemy defines the circumference of a circle to have 360°. Never does Ptolemy define
the circumference of his circles in terms of parts as he does the chords. This is helpful because
it means the arc is equal to the central angle that it subtends allowing us to switch between them
fluidly.

Lastly, the angle a chord (or arc) subtends from the center of a circle is always twice the angle
if the vertex is drawn on the perimeter of a circle. To understand how this is helpful, consider a
side of a triangle inscribed in a circle. The length of that chord will allow us to determine the arc
defined by the same endpoints. Since those arcs are defined in degrees, the angle opposite that side
in the triangle (which is on the perimeter of the circle) will always have half the measure of the arc
defined by the chord, so long as the point is not within the arc created by the points that define the
chord.

1.5 On Calendars

A brief but important consideration before going forward is to consider how Ptolemy regarded
calendars since he did not use the Julian calendar, despite it existing in his time. Instead, Ptolemy
relies on the Egyptian calendar. This calendar has twelve months in which each month consists
of 30 days. The calendar then has five epagomenal days inserted at the end of the year but are
not considered part of any month. This gives a total length for the Egyptian year of 365 days.
However, the calendar did not include intercalary days, more commonly known as “leap days.”

The reasoning for this is not explained by Ptolemy, but it likely stems from the reason that the
Almagest makes heavy use of tables for which the motion of objects on their spheres is given for
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various intervals of time, including years. Thus, he requires a year of a fixed duration to correspond
to a fixed amount of motion. Otherwise, if the number of days in a year could vary by having leap
days, then how would one define the motion in a year?

While Ptolemy does not discuss it, his calculations still make it apparent that he was well aware
of the need for leap days. Indeed, if he did not consider them when determining the interval of
time between two dates, then there would be days for which the motion of the objects was not
accounted and the results of his calculations would quickly become inaccurate. For example, the
mean speed of the sun along the ecliptic is nearly 1° per day. Thus, if Ptolemy failed to account
for an intercalary day, then the calculated position of the sun would be off by that amount.

One place we can see that Ptolemy is aware of the need for such days is in the first chapter
of Book III where he discusses the length of the year. By comparing the dates of the solstices
and equinoxes to records of astronomers several hundred years earlier, he is able to determine the
length of the year to be 365 days, 5 hours, 55 minutes, and 12 seconds (365.246 days). This is an
impressively accurate value, only about 6 minutes over the correct one.

Lastly, Ptolemy reckoned the beginning of the day from noon on that day. As such, when his
dates are translated to conform to our modern calendar, the dates are frequently given as two dates
since one of his days spanned two of ours. Following Ptolemy’s definition, I have started the epoch
defined in this paper from noon on May 1, 1966.

1.6 On Time

One challenge that Ptolemy must frequently wrestle with is that of time zones. While these did not
formally exist in his time, Ptolemy makes frequent use of observations from astronomers before
him who lived in what we would consider different time zones than his native one of Alexandria
in modern day Egypt. Ptolemy adopts his local time as the standard throughout the Almagest, and
thus converts all observations to Alexandrian local time. For my updating of Ptolemy’s models, I
have done likewise, using my home city in the Barony of Three Rivers (mka: St. Louis, MO) as
the standard which exists in the Central Time zone. For ease of use, I will always display things in
the appropriate time zone for my updating.

However, this does introduce a complication with which Ptolemy did not need to trouble him-
self: Daylight savings time. This annual adjustment of the clocks means we will need to pay extra
careful attention to times, adjusting as necessary so we always have a consistent system. For this
paper, I will always use Central Standard Time (CST). Thus, if a date falls during daylight savings
time (i.e., is Central Daylight Time, CDT), we will need to subtract an hour to adjust to CST.
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CHAPTER 2

Solar Model

The first model Ptolemy begins developing is the solar model. This choice is a reasonable one as
the solar model will later be used to calibrate the other models requiring that it be developed first.
In addition, the sun’s motion is relatively simple making it an easy starting point. While it speeds
up and slows down, its path across the sky defines the ecliptic which is used as the baseline for the
ecliptic coordinate system and astronomers throughout period used. As such, there is no need to
worry about its ecliptic latitude. The sun’s motion is also simple such that there is no retrograde
motion. Because of this simplicity, Ptolemy is free to use either the eccentric or epicyclic model as
both can reproduce this simple motion. He ultimately settles on the former, having the sun move
counter-clockwise on the eccentre since that is the direction the sun moves through the zodiac
signs.

This choice of model requires surprisingly few pieces information to calibrate, although deter-
mining them is not always straightforward. They include the mean speed of the sun on the deferent,
the location of the center of the eccentre, and a date for which the sun’s position was known from
which to reverse calculate the epoch.

2.1 Solar Mean Motion

The first of these parameters is quite easily to determine. Since the sun travels a full circle around
the sky each year, we can determine the daily motion by dividing 360° by the number of days
in a year. Ptolemy used a value of 365.246 days. Thus, we get that the sun’s mean motion is
0.9856352784 °

day
.

While we could multiply this by any interval of time, expressed in days, to determine how
far the sun moved about the eccentre in that interval, Ptolemy makes it easier and performs this
calculation for us, giving the motion of the sun in 18 year intervals, single years, Egyptian months,
single days, and single hours. This he lays out in III.2 and as these values have not changed since
his time, I have reproduced this table in Appendix B.
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Figure 2.1: Diagram for determining the position of the eccentre.

2.2 Ecliptic Longitude of Apogee

Next, we can ask where the eccentre is located in relation to the earth and explore the effects it
will have on the anomalistic motion. In particular, this location will have two consequences to
the anomaly. The first is that the position of the eccentre determines the direction of apogee and
perigee which, as we have seen, determines whether the anomaly causes the apparent position of
the sun to lag or precede the position the sun would have were the eccentre not offset. Second, the
more distant the center of the eccentre is from the earth, the larger the anomalistic effect. We will
begin by understanding the location of apogee, expressing it in ecliptic longitude.

To do so, we construct Figure 2.1. In it, circle ABGD is the ecliptic1, centered on the Earth at
E. It is drawn such that A is the vernal equinox, B the summer solstice, G the autumnal equinox,
and D as the winter solstice.

The solar eccentre is circle NPOS, with center Z, offset from the circle of the ecliptic by
distance EZ. The points of apogee and perigee are unlabeled on this circle, but the projection
of the apogee onto the ecliptic is labeled at point H . We can quickly notice that the arcs of the
eccentre are not even in the quadrants defined by the ecliptic. This matches the fact that the length
of time is not equal between subsequent equinoxes and solstices. Ptolemy used the ratio of times
between each equinox and solstice to a full year in order to determine the proportion of the 360°

1I have omitted the constellations around the ecliptic as the diagram is not to scale and would lead to incorrect
assumptions about which constellations things were in.
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motion in that same time. He describes the method by which he determined these dates in III.1.
There, he describes an equatorial armillary which, at its simplest, is a metal ring fixed such that it
is perfectly parallel to the earth’s equator. So for an observer on the equator, this ring would be
fixed perfectly vertically. As latitude increases for the observer, the ring would be tilted lower and
lower with an angle from the vertical corresponding to the latitude until the observer was at the
poles in which case it would be parallel to the ground.

To understand how this would be used, consider the position of the sun at its extremes in
summer and winter. In the summer, the sun is high in the sky. Thus, the shadow from the edge of
the ring towards the sun would fall below the back ring. In winter, when the sun is lower in the sky,
it would be above the side further from the sun. On the equinoxes, the sun would be between these
two extremes and the side of the ring toward the sun would cast a shadow directly on the further
side. The date that happened, with a sliver of light changing from the bottom to the top of the far
ring, was the autumnal equinox.

Instead of determining this myself, I have used modern sources. In 20002 [11], the vernal
equinox was on March 20 and happened at 1:30am CST3. At that time, the sun’s projection onto
the ecliptic would have been at A meaning the sun’s true position on the eccentre would be at M .

The following summer solstice occurred on June 20 around 8:00pm CST4 [11]. Since B is the
summer solstice on the ecliptic, this would mean the sun at this time would have been at Θ. The
interval between these two dates is 92 days and 18.5 hours (92.77 days).

Since the sun moves on the eccentre at a constant rate, the ratio of this interval of time to a year
is equal to the ratio it moved on the eccentre to a complete circle:

92.77083

365.246
=

arc MΘ

360°
Solving, we determine that arc MΘ = 91.44°.
Similarly, we can determine arc ΘK using the interval of time between the summer solstice

and the autumnal equinox, G on the ecliptic when the sun would have been at K on the eccentre.
In 2000, the autumnal equinox occurred September 22 at 11:30am CST5 [11]. The interval of
time between the summer solstice and this equinox is 93 days and 15.5 hours or 93.64583 days,
allowing us to write:

2I am performing these calculations based on 2000 because the most commonly used modern astronomical epoch,
the J2000 epoch, is based on this year. As such, it will make comparing the model to the true values easier as the
position of the vernal equinox on which the ecliptic longitude is based, drifts over the years.

3Ptomely’s times are generally given no more accurately than the nearest half hour. The actual time of the solstice
would have been 1:35am CST, so to replicate Ptolemy’s level of accuracy, I have rounded down.

4This date was during daylight savings time so one hour has been subtracted and then rounded to the nearest half
hour.

5Converted from daylight savings and rounded slightly.
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93.64583

365.246
=

arc ΘK

360°
Solving gives arc ΘK = 92.30°.
We can repeat this again for arc KL, which represents the motion of the sun on the eccentre

between the autumnal equinox and the winter solstice which occurred on December 21 at 7:30am
CST6. The interval between these two dates is 89 days and 20 hours or 90.83. Again writing this
out as the ratios:

89.83

365.246
=

arc KL

360°
Solving we find arc KL = 88.54°.
We could repeat this process for arc LM but it is not necessary for the remaining solution.

Instead, we can add arc ΘK to arc KL to get arc ΘL = 180.84°.
We can then observe that arc ΘN = arc OL. The sum of these two arcs is arc ΘL−arc NO.

Next, we can see that NO bisects the eccentre and thus, arc NO = 180°. Thus,

arc ΘN + arc OL = 180.84°− 180° = 0.84°

And since those two arcs are equal in length, each will have a length of half this or 0.42°.
Let us now focus on the top of these two arcs. If we draw a line, extending from point Θ

such that it meets ZN perpendicularly at T , and connect Z to Θ, we form right triangle ZΘT .
From this, we can determine the length of this new line, ΘT , using a bit of trigonometry. In this
triangle, ZΘ = 60p since it is a radius of the eccentre, the true size of which Ptolemy does not
currently know. In addition, ∠TZΘ = 0.42° since it is subtended by arc ΘN . Applying some
basic trigonometry:

sin(0.42°) =
TΘ

60p

Solving we determine that TΘ = 0.44p. Because this line segment is bounded by NO and
BD which are parallel, any other parallel segments bounded by these other two lines will be equal.
This means that TΘ = ZR = XE = 0.44p.

Let us now turn our attention to arc ΘK. This ark is composed of three distinct segments:
arc ΘN , arc NP , and arc PK. The sum of these, as already shown, is 92.30°. In addition, we
have demonstrated that arc ΘN = 0.42°, and we can see arc NP = 90°. As such, we can subtract
each of those two arcs from arc ΘK to determine arc PK = 1.88°.

Again, we can create a right triangle by extending a line from K, perpendicular to PZ at point

6This was not during daylight savings time so no adjustment needed, but slight rounding.
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F and then connecting K to Z. We again know that KZ = 60p as it’s again a radius of the
eccentre. In addition, we know that ∠FZK = 1.88° since it is equal to the arc subtending it. We
can then apply the same trigonometry:

sin(1.88°) =
FK

60p

Solving we see that FK = 1.97p.
As with before, FK = ZX = RE = 1.97p, since they are all bounded by the same parallel

lines, PR and KE.
Now let us consider the right triangle ZEX . We have succeeded in finding two of the sides

in this triangle: ZX and XE (which were 1.96p and 0.44p respectively). If we consider ∠ZEX

in this triangle, we can see that it is the same angle as ∠HEG which is the angular distance in
ecliptic longitude of the apogee, H , from the autumnal equinox, G. We can solve for this angle
with a bit of trigonometry:

tan∠ZEX =
ZX

XE
=

1.97p

0.44p

Solving for ∠ZEX we determine that it is 77.41° before the autumnal equinox which is
102.59° ecliptic longitude (since the autumnal equinox is defined to be 180° in ecliptic longi-
tude). For the modern-day position of the vernal equinox, this places the sun just over 121

2
° into

Gemini at apogee. As we will see in Chapter 2.3, only at apogee and perigee can we directly relate
the position on the eccentre to the position on the ecliptic since only at those two points does the
effect of the offset between their respective centers becomes zero.

Before proceeding, let us pause and consider the accuracy of this result. The actual apogee in
2000 was on July 3 at 5:49pm CST7 [1]. At that time, Stellarium puts the sun at 102.28° eclip-
tic longitude [7] and the International Meteor Organization’s (IMOs) Solar Longitude Calculator

gives a value of 102.21° [12]. Thus, our result is about 0.35° high.
This error is likely due to the rounding done when determining the days in each interval. We

can understand why when we consider the small angles that were plugged into the sin function.
Because the sin function has its greatest slope when near 0°, this means it is sensitive to small
changes. Toomer notes that being even a single hour off could result in an error of 1° in the
position of apogee [10]. Thus, the error here is well within reason.

7Converted from GMT to CST.
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2.3 Effect of Eccentricity and the Solar Anomaly

Now that we have determined the direction of apogee, we can next use some of the work to deter-
mine the distance between the earth and the center of the eccentre. Again referring to Figure 2.1,
we can see that we already have sides ZX and XE of right triangle ZXE in which EZ is the dis-
tance between the earth and the center of the eccentre. Thus, we can quickly use the Pythagorean
theorem to determine this distance:

1.972 + 0.442 = EZ
2

Solving, we determine EZ = 2.02p8. With that distance in hand, we can now determine what
the effect of this offset will be. Ptolemy explores this in III.5 in which he determines the deviation
from the mean motion (i.e., what the position of the sun would be if the eccentre were centered on
the earth) for various points about the eccentre based on their distance from apogee. This deviation
from the mean motion is known as the equation of anomaly or more simply the anomaly.

Figure 2.2: Diagram for determining the equation of anomaly based on distance from apogee.

In Figure 2.2, the ecliptic is drawn as circle ABG centered on the earth at D. The sun’s
eccentre is circle EZH centered on Θ.

As an example, we will consider the case when the sun is at Z, 30° from apogee at E, meaning
arc EZ = 30°. We will attempt to find ∠DZΘ as this is equal to the equation of anomaly as

8This is notably different than the value of 2.5p during Ptolemy’s time.
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Ptolemy demonstrates in III.3. To do so, we have extended ZΘ such that it meets a line extended
from D at point K, meeting perpendicularly.

Since arc EZ = 30°, so too is the angle it subtends, ∠EΘZ as well as ∠DΘK since it is a
vertical angle to ∠EΘZ. We just demonstrated that the distance between the earth and the center
of the eccentre was 2.02p in the context of the eccentre. Thus, we can apply some trigonometry to
4DΘK and solve for ΘK:

cos(30°) =
ΘK

2.02p

Solving, we determine ΘK = 1.75p. We can then quickly use the Pythagorean theorem to
determine DK = 1.01p

We can then add ΘK to ZΘ which has a measure of 60p since it’s the radius of the eccentre, to
determine ZK = 61.75p.

Next, consider right triangle DZK. We now know two of the sides in this right triangle and
can therefore use trigonometry to determine ∠DZΘ:

tan(∠DZΘ) =
1.01p

61.75p

Solving this for ∠DZΘ, we determine it is equal to 0.94°9. Thus, when the sun is 30° from
apogee on its eccentre (measured counter-clockwise), it will appear to be 0.94° away from the
position one would expect based on its mean motion alone. Whether it is increased or decreased
will be determined by whether it is before or after the apogee. As we saw in 1.3, if the object is
before the apogee the effect will be additive. If it is after the apogee, it will be subtractive.

Ptolemy repeats this calculation, for numerous angles from apogee, going in 6° increments
from 0°−90° from apogee, and then in 3° increments from 90°−180° where the sun will be closer
to perigee and thus moving faster giving need for a greater resolution. His results are displayed in
III.6 of the Almagest. I have followed suit, and my results are available in Appendix C.

2.4 Determining Epoch Position

The final step before reverse calculating the position of the sun at the beginning of the epoch will
be to select a date for which we now know the position of the sun as well as both the sun’s mean
position and equation of anomaly. It may be tempting to use the apogee for which there is no
anomaly, but this date was not known to Ptolemy10.

9This varies from Ptolemy’s result of 1.15° which is to be expected since the distance to the center of the eccentre
is also changed. In particular, the center of the eccentre is moved closer to earth which would diminish the effect.

10We only used the date of the apogee in the context of checking the accuracy of our results.
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Instead, we will choose the autumnal equinox since we have already determined the distance of
apogee from this solstice (Chapter 2.2). Specifically, we showed that, on the the autumnal equinox,
the sun was 77.41° past apogee (going counter-clockwise) on the ecliptic. However, this position
is composed of both the mean position as well as the effect of the anomaly. In other words

Ecliptic longitude = mean position± equation of anomaly

So far in this equation, we have determined the ecliptic longitude of the sun on the autumnal
equinox, but will need to determine the equation of anomaly in order to solve for the mean position
which is the distance of the sun from apogee on the eccentre. From there, we can apply the mean
motion of the sun over the interval since the beginning of the epoch to determine the sun’s mean
position at that time.

Figure 2.3: Diagram for determining the position of the sun on the eccentre for the autumnal
equinox in 2000.

To do so, we will make use of Figure 2.311. In this diagram circle EZ is the eccentre, centered
on Θ. The ecliptic is circle AB centered on the earth at D with point B being the position of the
sun as viewed from earth on the autumnal equinox, thus making point Z the position of the sun on
the eccentre at that time. To assist us in our math, I have also dropped a line from Θ onto BD such

11Here, I am following Ptolemy’s method albeit with a slightly modified diagram. However, I believe it would have
been easier to determine ∠PZK from arc PK in Figure 2.1 and add that to ∠HZP which is equal to ∠ZEX which
we found. The sum of these angles would then be ∠HZK which is the angular distance of the sun from apogee on
the eccentre for the autumnal equinox which is what we’re ultimately after.
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that it falls perpendicularly at point K.
In Chapter 2.2, we determined that the apparent position of the sun on the ecliptic at apogee,

A is 77.41° from the autumnal equinox which we can now consider to be point B, thus making
arc AB = 77.41° as well as the central angle it subtends, ∠BDA. If we consider this same angle
in4ΘKD, it is ∠KDΘ. Within this triangle we also determined in Chapter 2.3 that DΘ = 2.02p

(there called EZ) in the context of the eccentre where its radius is 60p. Since this is a right triangle,
we can use trigonometry to solve for KΘ.

sin(77.41°) =
KΘ

2.02p

Solving, we find that KΘ = 1.97p.
We can then consider 4ΘZK, which is also a right triangle. In it, we know ZΘ = 60p and

KΘ = 1.97p so we can again apply some trigonometry to determine ∠ΘZK which is equal to the
equation of anomaly.

sin(ΘZK) =
1.97p

60p

Solving, we see that ∠ΘZK = 1.88°. As with before, this is the equation of anomaly. Re-
calling that the sun moves counter-clockwise on the eccentre, we can see that its motion from Z to
E must greater than 180°. As discussed in Chapter 2.2, this means its position would be found in
the second column of the Table of Solar Anomaly and thus have a subtractive effect on the mean
position. Therefore to cancel it out and determine the position of the mean sun, we must add it.
Thus, we find that ∠EΘZ = 79.29°.

Now that we know the true position of the sun on the eccentre at the time of the autumnal
equinox in 2000, we can use the Table of Mean motion to figure out how much it would have
advanced since the beginning of our epoch and subtract it from this position. The interval between
noon on May 1, 1966 (the beginning of the epoch we are defining) and 11:30am September 22,
2000 is 34 years, 152 days (143 days in that calendar year + 9 leap days), 23.5 hours. To determine
how far the sun moved on the eccentre, we look up corresponding time periods in the Table of
Mean Motion of the Sun in Appendix B, breaking up periods into ones present in the table and
estimating between entries where necessary as shown in Table 2.1.
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Interval Degrees
18 years 355.6237794

16 years 356.1100261025

150 days 147.8452917663

2 days 1.9712705569

23 hours 0.9445671418

0.5 hours 0.0205340683

Total 862.5154690358

Table 2.1: Motion of the sun on the eccentre between epoch and the 2000 autumnal equinox.

Note that the total has gone more than two full revolutions of 360° so we will need to subtract
out those revolutions to get that the relevant motion on the eccentre during that time is ≈ 142.52°.
Subtracting that from the relative position of the sun in relation to the apogee on that date,

79.29°− 142.52° = −63.23°

This indicates that at the beginning of the epoch, the sun should have been 63.23° before (i.e.,
clockwise from) the apogee on the eccentre which is the position of the mean sun.

We can translate that into an actual position of ecliptic longitude. Since we showed in Chapter
2.2 that the position of the sun at apogee had an ecliptic longitude of 102.59°, 63.23° before that
would put the mean sun at 39.36° ecliptic longitude. However, we must apply the adjustment for
the anomaly by looking up the angle of the mean sun before epoch in the Table of Solar Anomaly
(Appendix C). Since the mean sun is 63.23° before the apogee, we must interpolate between the
lines for 60 and 66. Doing so, we get an equation of anomaly of 1.69°. Since our argument was
found in the first column, we add that to the position of the mean sun:

39.36° + 1.69° = 41.05°

Again, we can compare this to the actual values from Stellarium [7] (41.34°) and the IMOs
calculator [12] (41.30°) both indicating this model makes a prediction that is about 1

3
° low. This is

an excellent agreement and would not be easily detectable by instruments in Ptolemy’s time.

2.5 Sample Calculation

Now that we have determined the position of the sun on the eccentre for the start of our newly
defined epoch, we can explore how to use this information to calculate the position of the sun
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on a given date. In short, it is the reverse of the process to calculate the position at epoch. We
will first determine the interval of time since epoch, look up the mean motion in the Solar Mean
Motion table (Appendix B), add that to position of the mean sun at epoch, determine how far that
is before apogee, use that value to look up the equation of anomaly in the Table of Solar Anomaly
(Appendix C), and add or subtract it from the mean position as necessary.

To begin, we will select the date of May 15, 2003 at 9:45pm CST12. We first determine the
interval since the beginning of the epoch. This is a period of 37 years, 23 days (14 days in that
calendar year + 9 leap days), and 9.75 hours. These intervals then get entered into the Solar Mean
Motion Table (Appendix B) and added:

Interval Degrees
36 years 351.2475587

1 year 359.7568766314

23 days 22.6696114042

9 hours 0.3696132165

0.75 hours 0.0308011121

Total 734.0744610642

Table 2.2: Calculation of the increase in solar position on the eccentre due to mean motion between
the beginning of the epoch and May 15, 2003 at 9:45pm.

Again, we subtract out any full revolutions of 360° which leaves us with an increase of the
mean solar position by 14.07°.

This gets added to the position of the mean at the start of the epoch which we showed in
Chapter 2.4 to be 39.36°. Thus, the position of the mean sun on the date in question is 53.43°
ecliptic longitude.

Next, we determine the argument of anomaly which is how far past apogee the sun is. As we
showed previously, the position of the apogee is 102.59° ecliptic longitude. This means the sun has
completed a revolution. In it, it moved 360°− 102.59° = 257.41° and then moved another 53.43°
into its next revolution. Thus, 257.41° + 53.43° = 310.84°. This is the distance from apogee
which we enter into the Table of the Sun’s Anomaly (Appendix C), estimating between the values
for rows 306 and 312 to determine an equation of anomaly of 1.43°. Since this value was found in
the second column, we add it to the position of the mean sun on the date in question:

53.43° + 1.43° = 54.86°
12I have selected this date because it is the date of an eclipse we will be using to calibrate the lunar model in Chapter

3.
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This puts the sun most of the way through Aries towards Taurus using the modern zodiac.
Checking this, we find a value of 54.80° from Stellarium [7] and 54.85° from the IMO’s calcu-

lator [12], both of which are in excellent agreement with the derived value13.

2.6 Accuracy of the Model

Before closing out this chapter, we can do a final appraisal of how accurate Ptolemy’s solar model
truly is. To explore this, I created an Excel file that calculated the position of the sun at noon each
day, beginning with the values derived for the start of the epoch and continuing through 2029.
Some liberties were taken such that I did not use the Solar Mean Motion table or the Table of Solar
Anomaly. Rather, the mean position was incremented by the daily motion discussed in Chapter
2.1 and the anomaly calculated each day using the method described in Chapter 2.3. Using Excel
to calculate these more directly avoids the error caused by numerous steps of rounding along the
way, giving a clearer picture of how the model truly behaves.

To determine the ecliptic longitude of the sun each day using a modern model, I turned to the
Solar Position Algorithm at the National Renewable Energy Laboratory’s (NREL) Measurement
and Instrumentation Data Center (MIDC) [8] which was able to generate daily results for a wide
range of years at one time.

Both of these datasets were imported into Microsoft Power BI, a data analysis tool, and graphed
together. A sample, filtered to 2003, is shown in Figure 2.4.

In the plot of ecliptic longitude, the two lines are indistinguishable. Only in the delta can we
see the difference where, in 2003, the models differed from −0.02° to 0.03°. As such, the minor
variation between models found in Chapter 2.5 was largely a result of the rounding and estimations
between values in the tables used.

13It should be unsurprising that this value is actually in better agreement with the true values than the one we
derived from epoch. In truth, this model has been calibrated for the year 2000 since that is the year of the solstices and
equinoxes we used. In this sample problem, 2003 is much closer to 2000 than 1996. Thus, the compounded errors in
mean motion over those intervals are smaller.
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Figure 2.4: Graph of the ecliptic longitude of the sun on each day of the year for 2003 as based on
the calculations in this paper (orange) and a modern astronomical model (blue). Below is a graph
of the difference between the two.

If we do not filter the data to a single year, we can see the pattern longer term as shown in
Figure 2.5. Here, we can clearly see a yearly variation in the discrepancies which have a deviation
of about 0.05° in a single year. This is imprinted on a longer term pattern where the Ptolemaic
model tends to get further ahead as time passes, having the most accurate year in 2000 which, as
we noted before, was the year for which the model was calibrated.

Figure 2.5: Graph showing the variance between the Ptolemaic model and the modern one.

Ultimately, this shows the excellent agreement that the Ptolemaic model has with reality, accu-
mulating ≈ 0.15° of error every 30 years. Within a century, this would certainly be noticeable to
astronomers in period as it would significantly change the timing and nature of eclipses predicted
using this model.

22



CHAPTER 3

First Lunar Model

With the solar model complete, Ptolemy turns to the next brightest object in the sky: the moon.
As with the solar model, Ptolemy will need to precisely know the position of the moon on given
dates to calibrate the lunar model. Instrumentation of his time was unable to deliver the necessary
precision, so Ptolemy turned to geometry. Specifically, it was understood that lunar eclipses only
happened when the moon passed through the earth’s shadow which is always directly opposite the
sun. Thus, if an eclipse occurred, Ptolemy could determine the position of the moon at mid-eclipse
as 180° away from the sun, using the position of the sun calculated in the solar model, hence why
the lunar model necessarily follows the solar one.

Figure 3.1: The lunar model as Hipparchus envisioned it. The moon’s sphere and deferent are
shown in blue. Its epicycle in red. The ecliptic, tilted by 5° with respect to the moon’s circle, is in
yellow. The intersection of the two circles are the nodes with the ascending node nearer to us in
this diagram.
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In the Almagest, Ptolemy takes two books to develop his lunar model. In Book IV, he largely
discusses the lunar model as it existed prior to him, developed by the Greek astronomer, Hip-
parchus, whose model is illustrated in Figure 3.1. Hipparchus made use of the epicyclic model,
placing the earth at the center of the deferent and having the moon on an epicycle. In this model,
the deferent rotates counter-clockwise while the epicycle rotates clockwise. In addition, this plane
is tilted by 5° with respect to the ecliptic. This small amount of tilt between these two circles is
sufficiently small that Ptolemy chooses to ignore it as he develops this first model1.

In Book V, Ptolemy discusses discrepancies between the model just derived and observation,
concluding that there is a second anomaly that must be introduced to fully account for the obser-
vations leading him to create a revised lunar model.

In this chapter, we will follow Ptolemy’s methods beginning by exploring the lunar motions.

3.1 Lunar Motions

Before attempting to set up any model, Ptolemy explores the various periods of the moon the model
will need to take into account. In other words, how do we define a lunar ”month”? This becomes
a complicated question as there are several ways to do so, all based on what Ptolemy referred to as
”returns”.

For example, we could ask how long it takes the moon to return to the same ecliptic longitude.
This is known as a lunar sidereal month. Unlike the sun, whose motion is confined to the ecliptic2,
the moon bobs up and down with respect to the ecliptic. As such, we could ask how long it takes
the moon to return to the same ecliptic latitude from the same direction. For example, in one of
these cycles, the moon will cross the ecliptic twice (0° ecliptic latitude). However, once it will be
moving upwards and once downwards. A full cycle would only include crossing the same ecliptic
latitude from the same direction. This is known as a draconitic month. Much like the sun, the
moon’s speed appears to change as it orbits. The period it takes to return to the same speed is
known as an anomalistic month. Lastly, we could consider the period it takes to return to the
same phase. This is a lunation or a synodic month.

Unfortunately, the period of each of these different types of ”month” are all different and none
of them divide evenly into a solar year. This is why the moon phase is not the same on the same
day of each year and the number of full moons in a year can vary.

Ptolemy explores these periods of lunar motion in Book IV, Chapter 2 (IV.2). In it, he turns
to Babylonian astronomers who were excellent record keepers of astronomical phenomena. From
these records, ancient astronomers attempted to find the cycles over which all of these various peri-

1Toomer [10] notes that this results in an error of up to ≈ 0.1°
2Indeed, the sun’s motion defines the ecliptic.
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ods converged and then repeated. Then, by dividing this longer period by the number of individual
returns, Ptolemy could determine with great accuracy the period of each cycle, which he expresses
in degrees per interval of time in his table of lunar mean motions (IV.4). This table is reproduced
in Appendix D.

3.2 Eclipse Details

To recreate Ptolemy’s methods, we will need to select three eclipses. I have taken the following
eclipses3 from the NASA Javascript Lunar Eclipse Explorer[3], choosing eclipses that would have
been visible in the Barony of Three Rivers.

1. May 15 2003, at 9:45pm

2. February 20 2008, at 9:30pm

3. April 15, 2014, at 1:45am4

Following Ptolemy’s method, we first calculate the solar position at these times which I have
done using the results from the previous chapter on the solar epoch.

1. 54.86° ecliptic longitude5

2. 331.99° ecliptic longitude6

3. 25.21° ecliptic longitude7

These can then be translated into the lunar position by adding or subtracting 180° since the
moon is opposite the sun.

1. 234.86° ecliptic longitude

2. 151.99° ecliptic longitude

3. 205.21° ecliptic longitude
3I have rounded the times for mid-eclipse to the nearest quarter hour to align with the precision of observations

available to Ptolemy. In addition, times were adjusted to remove daylight savings time for eclipses 1 and 3.
4NASA’s Eclipse Explorer is somewhat misleading on this eclipse listing it as April 14. This is likely due to the

eclipse starting on April 14th, but the time of mid eclipse was April 15th as can be confirmed by other sources [14].
5This calculation was done as an example in Section 2.5. See discussion there for analysis of accuracy.
6Value from Stellarium [7] of 331.87°.
7Value from Stellarium [7] of 25.07°.
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3.3 Calibration of the Lunar Model

Now that we have the basic information for three eclipses selected, we can begin to work out the
parameters of the lunar model. We currently have the true position of the moon at three times.
However, these true positions are the combination of the mean and true position. Thus, to be able
to understand the components of the model, we need to know where the mean moon was, as well
as understand where the moon was on its epicycle, and the size of the epicycle and deferent.

3.3.1 Eclipse Pairing

To do so, Ptolemy pairs off the eclipses. If we take the first two eclipses from our selection we
see that the moon advanced 277.13° beyond full revolutions in the time between the two eclipses.
That time span is 4 years, 281 days, and 23.75 hours. Similarly, we can pair the second and third
eclipses to see it advanced 53.22°, beyond full revolutions, over the course of 6 years, 55 days
days, and 4.25 hours.

These motions can then be compared to the mean motions over those intervals. To do so, we’ll
turn to the Lunar Mean Motion Table in Appendix D, looking at the increase in longitude as well
as anomaly over this period. For the first pair of eclipses, we have the following:

Interval Mean Motion (°) Anomalistic Motion (°)

4 years 157.5180341 354.8749757

270 days 317.6231981 287.5453722

11 days 144.9402044 143.7148115

23.75 hours 13.03912824 12.92888929

Total 273.1205648 79.06404869

Table 3.1: Calculation of the increase in mean lunar longitude and anomalistic motion between
May 15 2003, at 9:45pm and February 20 2008, at 9:30pm

The mean motion of Table 3.1, can then be compared to the true motion of 277.13° calculated
above to determine that the moon advanced 4.01° more than it would have based on mean motion
alone as a result of a 79.06° motion about the epicycle. In other words, a 79.06° motion about the
epicycle resulted in the moon moving 4.01° more than it would have based on mean motion alone.
Thus, the effect of the anomaly was forwards in ecliptic latitude (i.e., counter-clockwise on the
deferent).

Doing the same for the second pair of eclipses which are separated by 6 years, 55 days, and
4.25 hours:
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Interval Mean Motion (°) Anomalistic Motion (°)

6 years 56.27705118 175.3124635

30 days 35.29146645 31.949485

25 days 329.4095554 326.6245715

4.25 hours 2.333317684 2.313590715

Total 63.31139071 176.2001107

Table 3.2: Calculation of the increase in mean lunar longitude and anomalistic motion between
February 20 2008, at 9:30pm and April 15, 2014, at 1:45am

From Table 3.2, we can see that the moon’s true motion (53.22°) over this interval is 10.09°
less than the mean motion as a result of 176.20° about the epicycle. In other words, a motion of
176.20° about the epicycle resulted in the moon moving 10.09° less than it would have based on
mean motion alone. Again, the effect of the anomaly was forwards (i.e., counter clockwise on the
deferent).

3.3.2 Determining the Radius of the Deferent

Using this information, we can now determine the radius of the deferent. To do so, we will ignore
the motion about the deferent, only considering the motion on the epicycle and the effect it has on
the anomaly, to construct a diagram shown in Figure 3.2.

Figure 3.2: An initial schematic for solving the lunar model showing the relative positions for each
of the three eclipses on the epicycle. While the angles about the epicycle are to scale, the size
anomaly is not as the epicycle is not drawn to the correct scale in relation to the deferent.

Here, we have the moon’s deferent, shown as a dashed line, centered on the earth at E. On the
deferent, we have the epicycle, centered on D. We can then consider the position of the moon on
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the epicycle at the time of the three eclipses given above, A, B, and C respectively. In addition,
we have created point F which is where EC intersects the epicycle.

From our calculations above, we know that ∠ADB, the motion about the epicycle from the
first eclipse to the second, is 79.06° which produces an anomaly, ∠AEB = 4.01° in the forward
(counter-clockwise on the deferent) direction. Similarly, ∠BDC, the motion about the epicycle
from the second eclipse to the third is 76.20° and produces an anomaly, ∠BEC, of 10.09°, this
time in the rearwards (clockwise on the deferent) direction.

Our first step in calibrating the model will be to determine the distance between the earth and
the center of the epicycle, ED as shown in Figure 3.3. In this diagram we have also labeled the
perigee on the epicycle, K, as well as the apogee, J .

Figure 3.3: Figure 3.2 redrawn to highlight the third eclipse and include the line between the earth
and center of the deferent

To determine ED, Ptolemy makes use of two theorems from Euclid’s Elements [4]. Specifi-
cally, he refers to theorem III.36 and II.6. Taken together, they give us the following equation8:

CE · FE + DK
2

= DE
2

To solve this, Ptolemy takes the radius of the epicycle, DK, to be 60p. Thus, we will need to
solve for CE and FE. This is done by creating numerous additional right triangles, as shown in
Figure 3.4, which can then be solved.

8For further discussion and a proof, refer to https://jonvoisey.net/blog/2020/08/almagest-book-iv-babylonian-
eclipse-triple-geometry-radius-of-the-epicycle/
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Figure 3.4: Eclipse diagram with additional right triangles drawn in.

In this figure, I have temporarily removed the angles from the center of the epicycle to each
of the eclipses for clarity. We have connected A to B and F . Point F was also connected to B.
Next, EA was extended such that a line drawn from F would meet it perpendicularly at H . A
perpendicular is also extended from F such that it meets EB at point G. Finally, a line is extended
from A such that it meets FB perpendicularly at I .

To solve this, Ptolemy first focuses on 4FEG. This is a right triangle with hypotenuse FE.
As described in Section 1.4.1, Ptolemy solves his triangle by imagining a circle around them and
in that triangle, the hypotenuse (FE) will be the diameter, having a length of 120p. We can also
determine ∠FEG = 10.09° as it is the anomaly between those two eclipses. Using trigonometry
we can then determine FGFEG = 21.02p. Here, I have added a subscript to remind us for which
context the size of these parts is true, since it is only true within the context of this imaginary circle
about this triangle and we will shortly be creating several other imaginary circles, each with their
own contexts of which we will need to keep track. We will then be able to convert pieces from
the own contexts in which we find them into the context about 4FEG if we have a line segment
in common by which to do so, as we shall see shortly. While the line segment length will change
depending on which context we’re considering at a given time, then angles are always preserved
between contexts.

For now, let us consider ∠CDB (more easily visible in Figure 3.2). We know that this angle
is 176.20 as that was the motion about the epicycle between the two eclipses. This is equal in
measure to arc CB. That arc subtends ∠BFC which is on the perimeter of the epicycle and thus
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has half the measure of the central angle/arc. Therefore, ∠BFC = 88.10°. We can then determine
its supplement, ∠BFE = 91.90°.

We can then focus on 4FBE. In it, we have determined ∠BFE = 91.90° and ∠FEB =

10.09°. Since a triangle has 180°, this means the remaining angle, ∠FBE = 78.01°.
We can now turn our attention towards 4FBG which contains the angle we just determined.

In this context, FBFBG = 120p as it is again the hypotenuse. Using the angle and the hypotenuse
we can determine, using trigonometry, that FGFBG = 117.38p.

We will now convert the length of this line into the context we created about 4FEG. To do
so, we will use the line segment we have determined in both contexts, FG, to appropriately scale
the unknown segment to the context of of 4FEG. This is done by taking the ratio of the the
segment known in both contexts and setting it equal to the ratio of the unknown segment, taking
care to keep the contexts (which I have denoted in subscripts) consistent as to whether they are in
the numerator or denominator. In other words:

FGFEG

FGFBG

=
FBFEG

FBFBG

Substituting in:

21.02p

117.38p
=

FBFEG

120p

Solving this, we find FBFEG = 21.49p. This procedure of solving triangles and converting
them to the context of4FEG will be repeated several more times.

Next, we will perform it on 4FEH . There, the hypotenuse, FEFEH = 120p. We can also
determine that ∠AEF = 6.08° as it is the difference of the anomalies between each of the eclipse
pairs: ∠BEC − ∠AEB. Using trigonometry, we find that FHFEH = 12.71p. In this case, we do
not need to do any work to convert the contexts because our line segment in common, FE = 120p

in both cases. Thus, the conversion ratio would be 1. Thus, FHFEG = 12.71p.
Now, arc ABC is the sum of ∠ADB + ∠BDC, the motion about the epicycle between the

eclipses, and is therefore 225.26°. This arc subtends ∠AFC which is on the perimeter of the circle
and not on the arc itself. Thus, this angle has half the measure, which is to say, ∠AFC = 127.63°.
We can then find its supplement along CE, ∠AFE, to be 52.37°.

This gives us two of the angles in 4FEA: ∠AFE = 52.37° and ∠AEF = 6.08°. Thus the
remaining angle, ∠FAE = 121.55°. We can then take its supplement along EH and find that
∠FAH = 58.45°.

This allows us to focus on4FHA. In that context, FAFHA = 120p. Again, using trigonome-
try, we can find that FHFHA = 102.26p. We can then convert FAFHA into the context of4FEG

using the following ratio with FH as our common segment.
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12.71p

102.26p
=

FAFEG

120p

Solving, we determine FAFEG = 14.91p.
Now consider arc AB which has a measure of 79.06°. The angle on the perimeter of the circle

that this arc subtends, ∠AFB, then has half the measure and is therefore 39.53°. This is part of
4FAI . We can now build a new context around this triangle in which FAFAI = 120p. From this,
we can determine AIFAI = 76.38p and IF FBI = 92.55p using trigonometry. These two segments
can then be converted back to the context of4FEG using FB as the common segment. Doing so
we find that AIFEG = 9.49p and IF FEG = 11.50p.

We can now determine a few other segments without having to solve additional triangles and
change contexts. First, BIFEG = FBFEG − IF FEG = 9.99p. In addition, we can determine
AB as it is part of right triangle 4AIB in which we now know two sides. Thus, we can use the
Pythagorean theorem to determine ABFEG = 13.78p.

Now that we have collected many of these segments in the context of 4FEG we can convert
them all to the context of the epicycle. In the epicycle, which has a radius of 60p, we can determine
the length of AB9 since we know that ∠ADB = arc AB = 79.06°. Either trigonometrically or
using Ptolemy’s table of chords, we can therefore look up the corresponding chord, AB = 76.38p.
This can now be used as our common segment to convert FEFEG.

76.38p

13.78p
=

FE

120p

Solving this equation we find that FE = 665.14p when the radius of the epicycle is 60p.
Next, we will determine CF so that it can be added to FE to determine CE. To do so, we will

first need to convert AF to the context of the epicycle:

76.38p

13.78p
=

AF

14.91p

Solving, we find AF = 82.64p. From this chord, we can then determine ∠ADF = 84.05°,
either using trigonometry or using Ptolemy’s table of chords and interpolating between rows. This
is the same measure as arc AF .

We can now determine arc CF as it is 360°−arc AF −arc AB−arc BC = 50.69°. We can
then determine the corresponding chord, CF , again either trigonometrically or using Ptolemy’s
table of chords, to be 51.39p. This can then be added to FE to determine CE = 716.51p.

We can now return to and solve the equation to determine the radius of the deferent, DE:

9Since this will be our final context for this exercise, I have discontinued using the subscript. Besides, writing out
”epicycle” as a subscript just looks dumb.
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716.51p2 · 665.14p2 + 60p2 = DE
2

Solving this, we find DE = 692.95p.
We can pause briefly to compare this value to Ptolemy’s who derived the value twice. The first

time, he used three eclipses recorded in Babylonian times, and the second set were ones from his
own lifetime. This decision was made to ensure that the radius of the deferent was not changing
over time. For the Babylonian eclipses, he found a value of 690.15p. For the second he found a
value of 689.10p. Thus, the value derived here is in excellent agreement. As a reminder, these
”parts” in which we have found this distance are still not in any absolute units but only for the
context in which the radius of the epicycle is 60p.

3.3.3 Equation of Anomaly

Now that the distance between the earth and the center of the epicycle are determined, the anomaly
in terms of the angle from apogee on the epicycle can easily be determined using trigonometry.

Figure 3.5: Diagram to find the equation of anomaly.

In Figure 3.5, we have again have the earth at Eand the center of the epicycle at D with its
apogee at J . If the moon is at some position, L, then the angle around the epicycle (remembering
that the moon moves clockwise on the epicycle and measured from apogee) is ∠JDL and DL =

60p. As we calculated in Section 3.3.2, DE = 692.95p.
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We can calculate LM as 60 · sin(∠JDL). Then, the equation of anomaly can be calculated as
tan−1( LM

692.95p
).

The results of this calculation have been done, as for the sun, and are collected in Appendix E.

3.3.4 Epoch Position

Next, we will determine the epoch position, but will first need to deconstruct the true position for
one of our three eclipses into the components of the mean position and the anomaly. To do so, we
will make use of Figure 3.6.

Figure 3.6: Diagram to find the anomaly for the third eclipse.

In this diagram, we have removed the first two eclipses. We have extended a line from the
center of the epicycle, D, such that it meets CE perpendicularly at N , which will necessarily
bisect it as a consequence of the perpendicular bisector theorem [6]. Thus, NF = 1

2
CF . Since we

determined CF = 51.39p in Section 3.3.2, this indicates NF = 25.70p. This can then be added to
FE which we previously determined to be 665.14p to determine NE = 690.84p.

In addition, we previously determined that ED = 692.95p. In,4NED, this is the hypotenuse,
so we can now use trigonometry to determine ∠NED:

∠NED = cos−1(
690.84p

692.95p
) = 4.47°

Recall that, in Section 3.2, we calculated the true position of the moon in ecliptic longitude for
the third eclipse was 205.21° ecliptic longitude. Since this anomaly is clearly subtractive based on
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the diagram, we add it to the true position to determine the mean position to be 209.68° ecliptic
longitude.

In addition, we can determine the position of the moon about the epicycle from Appendix E
by looking up the anomaly and interpolating between rows to determine the angle from apogee,
recalling that the anomaly was subtractive and as such, we must look in the first column, closer
to apogee than perigee. Doing so, we find the angle from apogee to be 64.65° at the time of the
eclipse.

With these two values in hand, we can now determine the epoch position as we did with the
sun. First, we need to determine the interval of time between the beginning of the epoch and the
time of the eclipse. That duration is 47 years, 360 days, and 13.75 hours. We can then use our
lunar table of mean motion (Appendix D) to determine the motions over this time period.

Interval Mean Motion (°) Anomalistic Motion (°)

36 years 337.6623071 313.8747812

11 years 343.1745938 255.9061831

360 days 63.49759745 351.4443438

13.75 hours 7.548968978 23.39382962

Total 31.88346733 224.6191377

Table 3.3: Calculation of the increase in mean lunar longitude and anomalistic motion between
May 1, 1966 at noon and, at 9:30pm and April 15, 2014, at 1:45am.

This increase in mean motion can then be subtracted from the mean position to determine the
position of the mean moon at the beginning of the epoch. Doing so, we find that the mean moon
was at 177.80° in ecliptic longitude. In addition, we can determine the position of the moon on the
epicycle, measured clockwise from apogee, to be 199.73°.

3.4 Sample Calculation

As a sample calculation, we will determine the position of the moon in ecliptic longitude at 5:30am
on February 14, 200110. To begin, we determine the amount of time between the beginning of the
epoch and this time to be 34 years, 297 days, and 18.5 hours11.

10This date has been selected because we will be making use of it in the next chapter.
11Note that we must add an extra hour here because May 1 was during daylight savings time, so we must undo the

”spring forward” to revert it to CST thereby adding the extra hour
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Interval Mean Motion (°) Anomalistic Motion (°)

18 years 168.8311535 156.9373906

16 years 270.0671365 339.499625

270 days 317.6231981 287.5453722

27 days 355.7623198 352.7545372

18 hours 9.333270736 9.254362859

0.5 hours 0.274507963 0.272187143

Total 41.8915866 66.263475

Table 3.4: Calculation of the increase in mean lunar longitude and anomalistic motion between
May 1, 1966 at noon and, at 5:30am on February 14, 2001.

From this, we can see that the moon advanced 41.89° beyond a full revolution on the deferent
and 66.26° beyond full revolutions about the epicycle.

To each of these, we will add their positions at epoch.

Interval Mean Motion (°) Anomalistic Motion (°)

Epoch Position 177.8 199.73

Interval motion 41.8915866 66.263475

Total 220.2406025 266.5378493

We then use the value of the anomalistic to determine the anomaly by looking this value up
in the Table of Lunar Anomaly (Appendix E). This produces an anomaly of 4.939° and since the
value we looked up was in the second column, it is additive for a final ecliptic longitude of 225.180°
from this model.

3.5 Accuracy of the Model

To investigate the accuracy of the lunar model, I created an Excel file which incremented the motion
on the deferent as well as that of the epicycle, then used the position on the epicycle to calculate
and apply the anomaly to determine the ecliptic longitude of the moon each day at noon. This was
then compared to a data set from NASA’s Horizon app [9] also giving the ecliptic longitude for the
moon each day at noon. The variance between them for 2020 - 2021 is shown in Figure 3.7.
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Figure 3.7: Plot of the variance between the position of the moon as predicted by the first lunar
model and position as calculated using NASA Horizon app.

Very quickly from this figure, we can see that the first lunar model has significant problems as
it can disagree with the true position by as much as −3.9°12 in the years between the years 1966
and 2029. However, there is something interesting we can notice if we take into consideration the
phase of the moon on the above graph.

Figure 3.8: Figure 3.7 with addition of full moons (open circles) and new moons (filled circles).

Here, we can see that the fit of the model is actually quite reasonable when the moon is full
(at opposition) or new (at conjunction). In fact, the agreement is even better than suggested by
this image alone because the points plotted are for noon on the day of the phase and can therefore
differ from the actual moment of full or new phase by as much as 12 hours and since the slope
of the variance is greatest around these times, this offset in time will play a significant impact.
This agreement at conjunction and opposition (together known as syzygy) is unsurprising since
the model was calibrated using lunar eclipses which happen only at opposition.

Between the full and new phases are the first and third quarter moons which is where the model
is deviating most strongly. Ptolemy was aware of this discrepancy, and addressing it is the subject
of Book V of the Almagest which we shall address in the next chapter.

12Here the negative is indicating the model is predicting a lower ecliptic longitude than its true position.
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APPENDIX A

Glossary of Terms

Altitude Circle
A great circle through an observer’s zenith, an object, and the horizon. The angle above the

horizon is measured along this circle.
Anomaly/Anomalistic Motion

If the sun’s position could be tracked against the background stars daily, it would be found that
some days, it moves more in ecliptic longitude than others. The average speed at which it travels
is the mean motion and the variance either above or below this is the anomalistic motion. This
difference in motion produces an angular difference in the position of the sun compared to where
the sun would have been due to mean motion alone. This angular difference is generally referred
to as the anomaly or equation of anomaly.
Apogee

In both of Ptolemy’s models, there are times at which objects paths along their spheres will
take them furthest from Earth. The furthest point is known at apogee.
Argument

An argument is a value, often looked up in a table, to find another value. For example, an
argument of anomaly would be looked up in one of the tables of anomaly to determine the equation
of anomaly.
Celestial Sphere

When observing the night sky, the apparent shape of the heavens is that of a dome above us. It
was apparent to ancient astronomers that the Earth was a sphere, and thus the night sky could not
simply be a dome above a flat surface, but had to be a sphere concentric to our own, albeit much
larger. To this sphere, all stars were fixed, unmovable. Since these astronomers argued against the
Earth turning on its axis to explain the daily motion of the night sky, they instead required that the
stellar sphere rotated once every day.
Celestial Equator

As the celestial sphere rotates, it appears to have fixed poles around which it does so, just as the
Earth does. Similarly, the celestial sphere also has a celestial equator, defined as a great circle 90º

37



away from these poles. Since the poles of the celestial sphere’s rotation are directly above Earth’s
so too is the celestial equator the direct projection of Earth’s equator onto the celestial sphere.
Celestial Poles (North/South)

The points on the celestial sphere directly above the earth’s north and south poles about which
the celestial sphere seems to rotate.
Circles

Following Ptolemy, this paper frequently makes reference to circles. However, Ptolemy’s vi-
sion of the heavens truly involved crystalline spheres. But since objects were fixed to the surface of
these spheres, the rotation of a sphere would produce motion in a single plane which would define
a circle.

As did astronomers before him, Ptolemy divides the circle into 360º. Arcs along the circumfer-
ence are similarly measured in degrees equal to the central angle which the arc subtends. However,
lines within the circle are measured in an arbitrary unit of “parts”. Regardless of the actual size of
the circle, it was defined to have a radius of 60 parts. Because Ptolemy worked in a base 60 system
known as sexagesimal, this is essentially the same as a circle having a radius of 1, analogous to the
modern unit circle.
Conjunction

When two celestial objects have the same ecliptic longitude.
Deferent

In the epicyclic model, the deferent is the main circle that carries the epicycles on which objects
lie.
Double Elongation

Twice the elongation. In Ptolemy’s second lunar model, this is always the angular distance
between the mean moon and the apogee of the deferent.
Eccentre

In Ptolemy’s eccentric model, the eccentric is the circle on which the celestial object travels.
This circle has its center offset from the Earth. The circle rotates counter clockwise.
Ecliptic

The apparent path of the sun in relation to the background stars. This forms a great circle and
the constellations through which the sun travels are the zodiac constellations.
Ecliptic Coordinates (Latitude/Longitude)

To describe the position of objects in the sky requires a coordinate system by which things can
be measured. This coordinate system should be affixed to the sky, so stars at least retain a fixed
position. One of the more commonly used ones in period was the ecliptic position in which a star’s
position was measured in relation to the ecliptic. If it was to the north of the ecliptic, it would have
a positive ecliptic latitude. If to the south, it would be negative.
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The system also needed a left-right component. But to do so required a zero point. This was
chosen as the point at which the ecliptic and celestial equator cross when the sun is in spring (i.e.,
the vernal equinox). If we placed ourselves as observers outside of the celestial sphere and looked
down on the ecliptic as a flat circle, we would measure the angle from this point counter-clockwise.
From within the celestial sphere, this would be described as right to left. This convention is chosen
because the mean motion of the sun and other celestial objects is right to left in relation to the
background stars. This is often described as “rearwards” in the Almagest. Thus, if one were to say
that an object were “to the rear of” or “after” a point, this would mean “counter clockwise from”
if viewed from outside the celestial sphere, or “to the left of” from within. Conversely, if an object
were “in advance of” or “before” a point, this would mean “clockwise from” or “to the right of.”

Since the ecliptic is defined by the sun’s motion, the sun will always be at 0º ecliptic latitude,
but is constantly changing its longitude.
Egyptian Calendar

The Egyptian calendar was divided into 12 months, each consisting of 30 days. This gives a
total of 360 days in the main year, but the Egyptian year has 365 days. This results in 5 “epagom-
enal” days being inserted at the end of each year which are not defined as being part of any month.
This calendar did not include leap years.
Elongation

The difference in ecliptic latitude between two celestial objects (typically the object and the
sun).
Epicycle

In order to explain the anomalistic motion of objects, ancient astronomers placed a secondary
circle on the deferent. This circle would rotate, sometimes putting the apparent position ahead of
the mean motion, and behind at other times. The size, rotation direction, and rotation speed could
be fine tuned to help explain the objects motions.

Equation of Anomaly The amount that the position of a celestial object differs from the mean
motion due to one of the various methods Ptolemy employs to induce anomalies in his models.
Equinox

The name equinox translates to “equal night” which indicates that the night and day are of
equal duration on these special dates. This occurs because the sun’s position on the ecliptic is
at one of the two nodes at which it intersects the celestial equator. Thus, if you were on Earth’s
equator, the sun would be directly overhead at local noon.
Great Circle A circle on the celestial sphere which has a center coincident with the center of the
celestial sphere and therefore the same diameter.
Mean Apogee

The point on the epicycle furthest from the point on the circle carrying the center of the deferent
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diametrically opposite the center of the deferent from the earth.
Mean Motion/Position

Annually, the sun completes a full circuit of its path along the ecliptic. Since this path is
defined as 360º and this happens in a little over 365 days, the daily motion averages to be just under
1º/day. This is the mean motion. The position of the sun based on this average alone (ignoring the
anomalistic motion) is the mean position.
Meridian

A great circle across the celestial sphere that intersects the observers horizon due north and
south (and thus crossing through the north and south celestial poles) and crossing through their
zenith.
Opposition

When two celestial objects have ecliptic longitudes that are 180° apart.
Parallax

The shift in apparent position of an object due to the observer’s position. Most frequently in
the Almagest, this is considered for the moon as it has a significant parallax due to the observer
being on the surface of the Earth which is not at the center of the celestial sphere.
Perigee

In both the epicyclic and eccentric models of motion, the object is brought closer and further
from the Earth. The closest point is known as perigee.
Quadrature

When an object has an elongation of 90° from another (typically from the sun).
Retrograde Motion

In general, the sun, moon, and planets all move right-to-left amongst the background stars when
viewed from earth (counter-clockwise when viewed from above the celestial sphere). However,
planets can sometimes slow and reverse their direction moving left-to-right. This apparent change
in direction is known as retrograde motion.
Small Circle

Any circle drawn on the celestial sphere which does not have its center as the center of the
celestial sphere and therefore has a smaller diameter.
Solstice

Since the ecliptic is tilted with respect to the celestial equator, there are two points when it has
its extremes in distance away from the celestial equator. One when the sun is the most northwards
and another when it is the most southwards. These points define the solstices. When viewed
from Earth, this results in the sun being higher in summer and lower in winter (in the northern
hemisphere). In addition, it results in the sun tracing a larger arc above the horizon in summer and
shorter in winter which results in the summer solstice being the longest day and the winter solstice
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being the shortest.
Syzygy

A conjunction or opposition of two celestial bodies, usually with the sun as one of the objects.
True Apogee

The point on the epicycle furthest from an observer on earth.
Zenith

The point in the sky for an observer 90° from their horizon (i.e., straight up).
Zodiac

The ecliptic traces a path through 12 constellations. These constellations are the 12 familiar
zodiac signs. Despite the constellations being notably different sizes in the sky, each is defined
as taking up 30º of the ecliptic. In Ptolemy’s time, the projection of the sun’s position onto the
ecliptic was just entering Aries on the vernal equinox, but due to precession of the equinoxes, it
now resides near the beginning of Pisces at this time of year.
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APPENDIX B

Table of the Mean Motion of the Sun

This appendix reproduces table III.2 of the Almagest which gives the mean motion of the sun in
degrees for various periods. This table is not updated from that of Ptolemy as it is based on the
length of a tropical year. Since the goal of this project is to understand how Ptolemy’s models
would have worked, this value was not updated in turn implying no need to update this table. Here,
it is presented in decimal form instead of sexagesimal for ease of use and arranged in decreasing
intervals.

18-year periods Degrees
18 355.6237794

36 351.2475587

54 346.8713381

82 342.4951175

90 338.1188968

108 333.7426762

126 329.3664556

144 324.9902349

162 320.6140143

180 316.2377937

198 311.861573

216 307.4853524

234 303.1091317

252 298.7329111

270 294.3566905

288 289.9804698

306 285.6042492

324 281.2280286
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342 276.8518079

360 272.4755873

378 268.0993667

396 263.723146

414 259.3469254

432 254.9707048

450 250.5944841

468 246.2182635

486 241.8420429

504 237.4658222

522 233.0896016

540 228.713381

558 224.3371603

576 219.9609397

594 215.5847191

612 211.2084984

630 206.8322778

648 202.4560572

666 198.0798365

684 193.7036159

702 189.3273952

720 184.9511746

738 180.574954

756 176.1987333

774 171.8225127

792 167.4462921

810 163.0700714

Single Years Degrees
1 359.7568766314

2 359.5137532628

3 359.2706298942

4 359.0275065256

5 358.784383157

6 358.5412597885
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7 358.2981364199

8 358.0550130513

9 357.8118896827

10 357.5687663141

11 357.3264762788

12 357.0825195769

13 356.8393962083

14 356.5962728397

15 356.3531494711

16 356.1100261025

17 355.8669027339

18 355.6237793654

Days (Months) Degrees
30 29.5690583533

60 59.1381167065

90 88.7071750598

120 118.2762334131

150 147.8452917663

180 177.4143501196

210 206.9834084729

240 236.5524668261

270 266.1215251794

300 295.6905835327

330 325.2596418859

360 354.8287002392

Days Degrees
1 0.9856352784

2 1.9712705569

3 2.9569058353

4 3.9425411138

5 4.9281763922

6 5.9138116707

7 6.8994469491

8 7.885082459
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9 8.870717506

10 9.8563527844

11 10.8419880629

12 11.826790008

13 12.8132586197

14 13.7988938982

15 14.7845291766

16 15.7701644551

17 16.7557997335

18 17.741435012

19 18.7270702904

20 19.7127055688

21 20.6983408473

22 21.6839761257

23 22.6696114042

24 23.6552466826

25 24.6408819611

26 25.6265172395

27 26.6121525179

28 27.5977877964

29 28.5834230748

30 29.5690583533

Hours Degrees
1 0.0410681366

2 0.0821362732

3 0.1232044098

4 0.1642725464

5 0.205340683

6 0.2464088196

7 0.2874769562

8 0.3285450799

9 0.3696132165

10 0.410681366

11 0.4517495026
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12 0.4928176392

13 0.5338857758

14 0.5749539124

15 0.616022049

16 0.6570901856

17 0.6981583222

18 0.7392264588

19 0.7802945954

20 0.821362732

21 0.8624308686

22 0.9034990052

23 0.9445671418

24 0.9856352784
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APPENDIX C

Table of the Sun’s Anomaly

In this table, I give the relationship between the angle of the mean sun past apogee to find the
equation of anomaly. Here, ”past apogee” means the number of degrees the sun is on the eccentre
measured beginning at apogee and going counter-clockwise.

This table does not match the one Ptolemy calculated in III.6 of the Almagest as the distance
between the earth and the center of the sun’s eccentre changed since Ptolemy’s time. As such,
these have been recalculated as described in Chapter 2.3 of this paper, using Excel.

To know whether the equation of anomaly should be additive or subtractive, determine which
column the argument is in. If the argument is found in the first column, then the sun appears to lag
where it should due to mean motion alone and the equation of anomaly should be subtracted. If it
is found in the second column, then the sun would appear ahead of the position it should have due
to the mean motion. As a result, the equation should be added to the mean motion.

Angle from Apogee Equation of Anomaly (°)

6 354 0.195

12 348 0.388

18 342 0.578

24 336 0.761

30 330 0.937

36 324 1.104

42 318 1.259

48 312 1.402

54 306 1.530

60 300 1.642

66 294 1.738

72 288 1.815

78 282 1.873
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84 276 1.911

90 270 1.928

93 267 1.929

96 264 1.924

99 261 1.915

102 258 1.899

105 255 1.879

108 252 1.853

111 249 1.822

114 246 1.786

117 243 1.745

120 240 1.699

123 237 1.648

126 234 1.592

129 231 1.531

132 228 1.466

135 225 1.397

138 222 1.324

141 219 1.246

144 216 1.165

147 213 1.081

150 210 0.993

153 207 0.903

156 204 0.809

159 201 0.714

162 198 0.616

165 195 0.516

168 192 0.415

171 189 0.312

174 186 0.209

177 183 0.104

180 180 0.000
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APPENDIX D

Table of the Mean Motion of the Moon

This appendix is a copy of the Lunar Mean Motions table presented in Book IV Chapter 4. It is
presented here in decimal as opposed to the original sexigesimal. In addition, it is presented in
order of descending units of time whereas the original was presented out of order to help preserve
space.

Longitude Anomaly Latitude Elongation
Epoch Position 177.80° 199.73° ° °

18 Year Periods Longitude Anomaly Latitude Elongation
18 168.8311535 156.9373906 156.8360617 173.2073742

36 337.6623071 313.8747812 313.6721234 346.4147483

54 146.4934606 110.8121718 110.5081851 159.6221225

72 315.3246141 267.7495624 267.3442468 332.8294967

90 124.1557677 64.686953 64.18030846 146.0368708

108 292.9869212 221.6243436 221.0163702 319.244245

126 101.8180747 18.5617342 17.85243184 132.4516192

144 270.6492282 175.4991248 174.6884935 305.6589933

162 79.48038177 332.4365154 331.5245552 118.8663675

180 248.3115353 129.373906 128.3606169 292.0737416

198 57.14268883 286.3112966 285.1966786 105.2811158

216 225.9738424 83.2486872 82.0327403 278.48849

234 34.80499589 240.1860778 238.868802 91.69586414

252 203.6361494 37.1234684 35.70486368 264.9032383

270 12.46730295 194.060859 192.5409254 78.11061247

288 181.2984565 350.9982496 349.3769871 251.3179866

306 351.2962767 147.9356402 146.2130488 64.5253608

324 158.9607635 304.8730308 303.0491105 237.732735
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342 327.7919171 101.8104214 99.88517214 50.94010913

360 136.6230706 258.747812 256.7212338 224.1474833

378 305.4542241 55.6852026 53.55729553 37.35485746

396 114.2853777 212.6225932 210.3933572 210.5622316

414 283.1165312 9.559983798 7.22941891 23.76960579

432 91.94768472 166.4973744 164.0654806 196.97698

450 260.7788383 323.434765 320.9015423 10.18435412

468 69.60989919 120.3721556 117.737604 183.3917283

486 238.4411453 227.3095462 274.5736657 356.5991024

504 47.27229884 74.2469368 71.40972737 169.8064766

522 216.1034524 231.1843274 228.2457891 343.0138508

540 24.9346059 28.121718 25.08185075 156.2212249

558 193.7657594 185.0591086 181.9179124 329.4285991

576 2.596912963 341.9964992 338.7539741 142.6359733

594 171.4280665 138.9338898 135.5900358 315.8433474

612 340.25922 295.8712804 292.4260975 129.0507216

630 149.0903736 92.808671 89.26215921 302.2580958

648 317.9215271 249.7460616 246.0982209 115.4654699

666 126.7526806 46.6834522 42.93428259 288.6728441

684 295.5838341 203.6208428 199.7703443 101.8802183

702 104.4149877 0.558233397 356.606406 275.0875924

720 273.2461412 157.495624 153.4424677 88.29496659

738 82.07729473 314.4330146 310.2785294 261.5023408

756 250.9084483 111.3704052 107.1145911 74.70971492

774 59.73960179 268.3077958 263.9506527 247.9170891

792 228.5707553 65.2451864 60.78671444 61.12446325

810 37.40190885 222.182577 217.6227761 234.3318374

Single Years Longitude Anomaly Latitude Elongation
1 129.3795085 88.71874392 148.7131145 129.6226319

2 258.7590171 177.4374878 297.4262291 259.2452638

3 28.13852559 266.1562318 86.13934362 28.86789569

4 157.5180341 354.8749757 234.8524582 158.4905276

5 286.8975426 85.59372038 23.56557269 288.1131595

6 56.27705118 175.3124635 172.2786872 57.73579139
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7 185.6565597 261.0312075 320.9918018 187.3584233

8 315.0360682 349.7499514 109.7049163 316.9810552

9 84.41557677 78.4686953 258.4180308 86.60368708

10 213.7950853 167.1874392 47.13114538 216.226319

11 343.1745938 255.9061831 195.8442599 345.8489509

12 112.5541024 344.6249271 344.5573745 115.4715828

13 241.9336109 73.34367099 133.270489 245.0942147

14 11.31311941 162.0624149 281.9836035 14.71684657

15 140.6926279 250.7811588 70.69671808 144.3394785

16 270.0671365 339.499625 219.4098326 273.9621104

17 39.451645 68.21864668 8.122947153 43.58474227

18 168.8311535 156.9373906 156.8360617 173.2073742

Days as Months Longitude Anomaly Latitude Elongation
30 35.29146645 31.9494858 36.88052996 5.722408101

60 70.58293291 63.8989716 73.76105992 11.4448162

90 105.8743994 95.84845741 110.6415899 17.1672243

120 141.1658658 127.7979432 147.5221198 22.8896324

150 176.4573323 159.747429 184.4026498 28.61204051

180 211.7487987 191.6969148 221.2831798 34.33444861

210 247.0402652 223.6464006 258.1637097 40.05685671

240 282.3317316 255.5958864 295.0442397 45.77926481

270 317.6231981 287.5453722 331.9247697 51.50167291

300 352.9146645 319.494858 8.805299621 57.22408101

330 28.206131 351.4443438 45.68582958 62.94648911

360 63.49759745 23.39382962 82.56635954 68.66889721

Days Longitude Anomaly Latitude Elongation
1 13.17638222 13.06498286 13.229351 12.19074694

2 26.35276443 26.12996572 26.458702 24.38149387

3 39.52914665 39.19494858 39.688053 36.57224081

4 52.70552886 52.25993144 52.91740399 48.76298775

5 65.88191108 65.3249143 66.14675499 60.95373468

6 79.05829329 78.38989716 79.37610599 73.14448162

7 92.23467551 91.45488002 92.60545699 85.33522856

8 105.4110577 104.5198629 105.834808 97.52597549
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9 118.5874399 117.5848457 119.064159 109.7167224

10 131.7638222 130.6498286 132.29351 121.9074694

11 144.9402044 143.7148115 145.522861 134.0982163

12 158.1165866 156.7797943 158.752212 146.2889632

13 171.2929688 169.8447772 171.981563 158.4797102

14 184.469351 182.90976 185.210914 170.6704571

15 197.6457332 195.9747429 198.440265 182.8612041

16 210.8221154 209.0397258 211.669616 195.051951

17 223.9984977 222.1047086 224.898967 207.2426979

18 237.1721021 235.1696915 238.128318 219.4334449

19 250.3512621 248.2346743 251.357669 231.6241918

20 263.5276443 261.2996572 264.5870207 243.8149387

21 276.7040265 274.3646401 277.8163571 256.0056857

22 289.8804087 287.4296229 291.0457219 268.1964326

23 303.0567909 300.4946058 304.275073 180.3871795

24 316.2331732 313.5595886 317.504424 292.5779265

25 329.4095554 326.6245715 330.733775 304.7686734

26 342.5859376 339.6895544 343.963126 316.9594204

27 355.7623198 352.7545372 357.192477 329.1501673

28 8.938702024 5.819520082 10.42182796 341.3409142

29 22.11508424 18.88450294 23.65117896 353.5316612

30 35.29146645 31.9494858 36.88052996 5.722408101

Hours Longitude Anomaly Latitude Elongation
1 0.5490159256 0.5443742858 0.5512229583 0.507947789

2 1.098031864 1.088748572 1.102445917 1.015895578

3 1.647047777 1.633122858 1.487002208 1.523843367

4 2.196063703 2.177497143 2.204891833 2.031791156

5 2.745079628 2.721871429 2.756114791 2.539738945

6 3.294095554 3.266245715 3.30733775 3.047686734

7 3.843111479 3.810620001 3.858560708 3.555634523

8 4.392127405 4.354994287 4.409783666 4.063582312

9 4.941143331 4.899368573 4.961006625 4.571530101

10 5.490159256 5.443742858 5.512229583 5.07947789

11 6.039175182 5.988117144 6.063452541 5.587425679
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12 6.588191108 6.53249143 6.614675499 6.095373468

13 7.137207033 7.07668979 7.165898458 6.603321257

14 7.686222959 7.621240002 7.717121416 7.111269046

15 8.235238884 8.165614288 8.268344374 7.619216835

16 8.78425481 8.709988573 8.819567332 8.127164624

17 9.333270736 9.254362859 9.370790291 8.635112413

18 9.882286661 9.798737145 9.922013249 9.143060203

19 10.43130259 10.34311143 10.47323621 9.651007992

20 10.98031851 10.88748572 11.02445917 10.15895578

21 11.52933444 11.43186 11.57568212 10.66690357

22 12.07835036 11.97623429 12.12690508 11.17485136

23 12.62736629 12.52060857 12.67812804 11.68279915

24 13.17638222 13.06498286 12.67812804 11.68279915
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APPENDIX E

Table of the Moon’s Anomaly

In this table, I give the relationship between the angle of the moon past the apogee of the epicycle
(going clockwise) to the equation of anomaly as viewed from earth. The calculation for this was
shown in Section 3.3.3.

Although the distance between the earth and center of the epicycle as calculated in Section 3.3.3
was in excellent agreement with Ptolemy’s value, the table here deviates from Ptolemy’s more than
should be expected from that minor deviation alone. This appears to be due to accumulated errors
from rounding on Ptolemy’s part.

Since the moon travels counter clockwise on its epicycle, if the angle is found in the first
column, the anomaly will be subtractive. If it is found in the second, it is additive.

Angle from Apogee Equation of Anomaly (°)

6 354 0.519

12 348 1.031

18 342 1.533

24 336 2.017

30 330 2.479

36 324 2.914

42 318 3.316

48 312 3.682

54 306 4.007

60 300 4.288

66 294 4.523

72 288 4.708

78 282 4.841

84 276 4.922

90 270 4.949
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93 267 4.942

96 264 4.922

99 261 4.888

102 258 4.841

105 255 4.781

108 252 4.708

111 249 4.621

114 246 4.523

117 243 4.412

120 240 4.288

123 237 4.153

126 234 4.007

129 231 3.850

132 228 3.682

135 225 3.504

138 222 3.316

141 219 3.119

144 216 2.914

147 213 2.700

150 210 2.479

153 207 2.251

156 204 2.017

159 201 1.777

162 198 1.533

165 195 1.284

168 192 1.031

171 189 0.776

174 186 0.519

177 183 0.260

180 180 0.000
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