Almagest Book VII: On Precession

At the beginning of the last chapter, Ptolemy noted that the celestial sphere appears to have a rearward motion of its own known as precession of the equinoxes. This motion means that the position of the sun in the zodiacal signs slowly increase in advance as time passes. In particular, the sun was at the beginning of Aries in Ptolemy’s time, but since then has advanced such that today it lies near the beginning of Pisces.

We can see this mainly from the fact that the same stars do not maintain the same distance with respect to the solstical and equinocital points in our times as they had in former times: rather, the distance [of a given star] towards the rear with respect to [one of] the same points is found to be greater in proportion as time [of observation] is later.

Continue reading “Almagest Book VII: On Precession”

Almagest Book III: On the Anomaly of the Sun – Basic Parameters

Now that we’ve laid out how the two hypotheses work and explored how they sometimes function similarly, it’s time to use one of them for the sun. But which one? Or do we need both?

For the sun, Ptolemy states that the sun has

a single anomaly, of such a kind that the time taken from least speed to mean shall always be greater than the time from mean speed to greatest.

In other words, the sun fits both models, but only requires one. Ptolemy chooses the eccentric model due to its simplicity.

But now it’s time to take the hypothesis from a simple toy, in which we’ve just shown the basic properties, and to start attaching hard numbers to it to make it a predictive model. To that end, Ptolemy states,

Our first task is to find the ratio of the eccentricity of the sun’s circle, that is, the ratio of which the distance between the center of the eccentre and the center of the ecliptic (located at the observer) bears to the radius of the eccentre.

Continue reading “Almagest Book III: On the Anomaly of the Sun – Basic Parameters”

Almagest Book III: On the Length of the Year

If I were to summarize the books of the Almagest so far, I’d say that Book I is a mathematical introduction to a key theorem1 and an introduction to the celestial sphere for the simplest case of phenomenon at sphaera recta. In Book II, much of that work is extended to sphaera obliqua, but in both cases, we’ve only dealt with more or less fixed points on the celestial sphere: The celestial equator, ecliptic, and points within the zodiacal constellations based on the immovable stars.

But the ultimate goal of the Almagest and my project isn’t to study the unchanging sky; it’s to understand the changing sky: The sun, moon, and planets. Ptolemy decides to start with the position of the sun is a prerequisite to understanding the phases of the moon, and planets are more complicated with their retrograde motions. And to kick off the investigation of the motion of the sun, Ptolemy first begins by carefully defining a “year” noting

when one examines the apparent returns [of the sun] to [the same] equinox of solstice, one finds that the length of the year exceeds 365 days by less than $\frac{1}{4}$-day, but when one examines its return to the fixed stars, it is greater [than 365 $\frac{1}{4}$-days].

Continue reading “Almagest Book III: On the Length of the Year”

Almagest Book II: Angle Between Ecliptic And Horizon – Calculations

We’ll continue on with our goal of finding the angle the ecliptic makes with the horizon. Fortunately, this task is simplified by the symmetries we worked out in the last post meaning we’ll only need to work out the values from Aries to Libra. Unfortunately, this value will change based on latitude as well as the position on the ecliptic, but we’ll still only do this for one location. And for that location, Ptolemy again uses Rhodes.

First we’ll start with angles at the equinoxes:

Continue reading “Almagest Book II: Angle Between Ecliptic And Horizon – Calculations”

Almagest Book II: Angle Between Ecliptic and Meridian – Angle Calculations

Now that we’ve gotten a few symmetry rules developed, we can return to the main objective of calculating the angle between the ecliptic and meridian at different points along the ecliptic. Specifically, Ptolemy sets out to do this at the first point in every sign. But thanks to the previously derived symmetries, we’ll save ourselves a bit of work.

First Ptolemy does some very short proofs for these angles at the meridian and solstice, and then a slightly more complex one for the signs between them.

Continue reading “Almagest Book II: Angle Between Ecliptic and Meridian – Angle Calculations”

Almagest Book II: Angle Between Ecliptic and Meridian – Symmetries

In my last post, I mentioned that entered a paper based on the rising sign calculations presented in this post into an A&S competition. This was a very interesting piece to do because it showed how well woven the roots are, as doing so made use of almost every section we’ve gone through previously. As such, it felt like a good capstone for book II. But it doesn’t end there.

Rather, Ptolemy decides to go on for several more chapters as this book is focused on the great circles on the celestial sphere. While we’ve covered the ecliptic and celestial equator pretty extensively, we have done less with the horizon and meridian which is where Ptolemy seeks to go for the last few chapters in this book. Specifically, we’ll be covering:

  • The angles between the ecliptic and meridian
  • The ecliptic and horizon
  • The ecliptic and an arc from horizon to the zenith (an altitude circle)

All followed by another summary chapter at various latitudes. As the title of this post may have indicated, we’ll be covering the first of these in this post1. Continue reading “Almagest Book II: Angle Between Ecliptic and Meridian – Symmetries”

Almagest Book II: Applications of Rising-Time Tables

At this point we’ve spent some considerable time doing the work to develop our rising time tables. Now Ptolemy answers the question: What can we do with them?

Ptolemy provides several algorithms:

Length of a Day

Seasonal Hours (Alternative Method)

Seasonal Hours to Equinoctial Hours

Horoscopes

Upper Culmination (Alternative Method)

Rising Point

Continue reading “Almagest Book II: Applications of Rising-Time Tables”

Almagest Book II: Ascensional Difference

Not content to simply figure out how long it would take a zodiacal constellation to rise at latitudes other than the equator, Ptolemy sets out to further divide the ecliptic into 10º arcs and he’s promised an easier method than what we’ve done previously. But before we can get there, Ptolemy gives a brief proof which he’ll make use of later.

To start, we begin with the vernal equinox on the horizon:

Continue reading “Almagest Book II: Ascensional Difference”

Almagest Book II: Calculation of Rising Times at Sphaera Obliqua for Remaining Arcs

In the last post, we explored the rising time for one zodiacal sign which would comprise 30º of the ecliptic. Since the preliminary math is now out of the way, we can quickly do 60º of the ecliptic which constitutes Aries and Taurus. From there, we’ll be able to more quickly compute the remaining constellations as well. Continue reading “Almagest Book II: Calculation of Rising Times at Sphaera Obliqua for Remaining Arcs”