Almagest Book IV: The Solar Anomaly and Lunar Periods

In the last post, we explored various lunar cycles from astronomers predating Ptolemy in which the moon reset its ecliptic longitude and anomalistic motion to define a full lunar period. These ancient astronomers did this by studying pairs of lunar eclipses1but Ptolemy notes that this method

is not simple or easy to carry out, but demands a great deal of extraordinary care

The reason for this difficulty is that, without careful consideration there can essentially be false positives of eclipses separated equally in time, but do not in fact, result in the moon returning to the same ecliptic longitude or same speed.

One of the reasons is that the conditions necessary to produce a lunar eclipse are also dependent on the sun, which has anomalistic motion. As such, it could be entirely possible that the moon could not have yet returned to the same ecliptic longitude as a previous eclipse, but the sun’s anomaly could cause an eclipse anyway.  Thus, a pair of eclipses may be equally separated in time, but

this is no use to us unless the sun too exhibits no effect due to anomaly, or exhibits the same [anomaly] over both intervals: for if this is not the case, but instead, as I have said, the equation of anomaly has some effect, the sun will not have travelled equal distances over [the two] equal time intervals, nor, obviously, will the moon.

To illustrate this, Ptolemy starts with an example. Continue reading “Almagest Book IV: The Solar Anomaly and Lunar Periods”

Almagest Book IV: Observations Necessary to Examine Lunar Phenomena

So far, Books I & II covered the motions of the sky and how to find the rising times of various points along the ecliptic. This was a good start because, in Book III, we explored the motion of the Sun which is confined to that ecliptic. So while the sun was somewhat complex because of its anomaly, it was still relatively simple. In Book IV, we’ll work on deriving a model for the motion of the moon.

Unfortunately, this is going to be a more complex model. Initially we could be concerned about the complexity of the model because the moon is not confined to the ecliptic – it bobbles above and below it by about 5º, but aside from discussing this briefly, we’ll safely ignore this for now and instead only worry about the moon’s motion in ecliptic longitude, that is to say, its projection onto the ecliptic.

However, what will complicate things is that one of the main things we consider regarding the moon, its phase, is also dependent on the sun. Thus, to consider the moon’s phases, we’ll need to be taking into consideration the sun’s anomalies at the same time we consider those of the moon. In addition, the points at which the moon is at apogee and perigee is not consistent as it was for the sun2.

The good news is that we’ve already explored the two models that Ptolemy uses to explain anomalies from the mean motion. As such, there will be far less exposition in this book and we’ll be able to dive in much more quickly. Continue reading “Almagest Book IV: Observations Necessary to Examine Lunar Phenomena”