Data: Converting Alt-Az to RA-Dec – Derivation

Last month, I had a post that briefly introduced the two primary coordinate systems for recording the position of objects on the celestial sphere: the Altitude-Azimuth (Alt-Az) and Right Ascension-Declination (RA (α)-Dec (δ)) systems. There, I noted that Alt-Az is quick and easy to use, but is at the same time nearly useless as objects fixed on the celestial sphere do not have fixed coordinates.

Instead, astronomers1 use the RA-Dec system because fixed objects have fixed positions. My modern telescope does allow for this system to be used rather directly because it has an equatorial mount which tilts the telescope to match the plane of the ecliptic instead of the plane of the horizon. Additionally, it is motorized to allow it to turn with the sky, thereby retaining its orientation in relation a coordinate system that rotates with the celestial sphere. Thus, once it’s set we’re good to go.

However, the quadrants Brahe used were neither inclined to the ecliptic nor motorized. Thus, measurements were necessarily taken in the Alt-Az system and would need to be converted to RA-Dec to be useful. Here, we’ll explore how that conversion works2. Continue reading “Data: Converting Alt-Az to RA-Dec – Derivation”

Almagest Book I: Rising Times at Sphaera Recta

We’ve finally hit the last chapter in Book I. In this chapter our objective is to “compute the size of an arc of the equator”. At first pass, that doesn’t seem to have much to do with the title. Arcs of equator vs rising times?

However, Earth is a clock, rotating once every 24 hours. Thus, if we know the length of an arc, we know something about when an object following that arc through the sky will rise and set because it’s a certain proportion of 360º per 24h. Notice that if you actually complete that division, it comes out to an even 15º/hr. That’s not a coincidence.

Fortunately, to work on this problem, we won’t even need a new diagram. We can recycle the one from last chapter. Again this time we’ll be wanting to determine all sorts of arc lengths, but we’ll start with the one where $arc \; EH = 30$º.

Continue reading “Almagest Book I: Rising Times at Sphaera Recta”

Introduction to the Celestial Sphere & Astronomical Coordinates

The goal in the next chapter in the Almagest, Ptolemy’s goal is to is to find the angle between the celestial equator and ecliptic. These are both features on the celestial sphere which, while fundamental to astronomy, are not terms we’ve yet explored (aside from a brief mention in the first chapter of Astronomia Nova). So before continuing, we’ll explore the celestial sphere a bit. In addition, if we’re to start measuring angles on that sphere, we will need to understand the coordinate systems by which we do so. Continue reading “Introduction to the Celestial Sphere & Astronomical Coordinates”