Almagest Book V: Components of Parallax – Corrections

At the end of the last post, we noted that Ptolemy wasn’t quite satisfied with what we did previously because we used some rather faulty assumptions.

As Ptolemy states it:

For lunar parallaxes, we considered it sufficient to use the arcs and angles formed by the great circle through the poles of the horizon [i.e., an altitude circle] at the ecliptic, instead of those at the moon’s inclined circle. For we saw that the difference which would result at syzygies in which eclipses occur is imperceptible, and to set out the latter would have been complicated to demonstrate and laborious to calculate; for the distance of the moon from the node is not fixed for a given position of the moon on the ecliptic, but undergoes multiple changes in both the amount and relative position.

The key phrase here is the “at the ecliptic, instead of the moon’s inclined circle.” This got swept under the rug in that post because Ptolemy didn’t really explain why the algorithm he gave us should work. So to understand, let’s start by taking a harder look at what’s actually going on.

Continue reading “Almagest Book V: Components of Parallax – Corrections”

Almagest Book V: Calculation of Lunar Parallax

So far in this book, we’ve refined our lunar model, shown how to use it to calculate the lunar position1, discussed a new instrument suitable for determining lunar parallax, as well as an example of the sort of observation necessary to make the calculation.

Now, Ptolemy walks us through an example of how to calculate the lunar distance using an example entirely unrelated to the one we saw in the last post.

In the twentieth year of Hadrian, Athyr [III] $13$ in the Egyptian calendar [135 CE, Oct. $1$2], $5 \frac{5}{6}$ equinoctial hours after noon, just before sunset, we observed the moon when it was on the meridian. The apparent distance of its center from the zenith, according to the instrument, was $50 \frac{11}{12}º$. For the distance [measured] on the thin rod was $51 \frac{7}{12}$ of the $60$ subdivisions into which the radius of revolution had been divided, and a chord of that size subtends an arc of $50 \frac{11}{12}º$.

Continue reading “Almagest Book V: Calculation of Lunar Parallax”

Almagest Book V: Lunar Parallactic Observations

In the last post we followed along as Ptolemy discussed the construction and use of his parallactic instrument, which he would use to measure the lunar parallax. To do so, Ptolemy waited for the moon to

be located on the meridian, and near the solstices on the ecliptic, since at such situations, the great circle through the poles of the horizon and the center of the moon very nearly coincides with the great circle through the poles of the ecliptic, along which the moon’s latitude is taken.

That’s pretty dense, so let’s break it down with some pictures, First, let’s draw exactly what Ptolemy has described above:

Continue reading “Almagest Book V: Lunar Parallactic Observations”

Almagest Book V: On the Construction of an Astrolabe

Book IV was all about setting up a preliminary lunar model with a single anomaly which Ptolemy modeled using the epicyclic model. But throughout, Ptolemy kept referencing a second anomaly he discovered, without ever saying how. In his introduction to Book V, Ptolemy finally gives the answer:

We were led to awareness of and belief in this [second anomaly] by the observations of lunar positions recorded by Hipparchus, and also by our own observations, which were made by means of an instrument which we constructed for this purpose.

That instrument was, at the time, called an “astrolabe” which simply means “for taking the [position of] stars,”3 but today we would call it an armillary sphere. Ptolemy describes how one should be constructed which is what we’ll be exploring in this post. To help us, here’s the image of one labeled from Toomer’s translation4.

Continue reading “Almagest Book V: On the Construction of an Astrolabe”

Almagest Book III: On the Length of the Year

If I were to summarize the books of the Almagest so far, I’d say that Book I is a mathematical introduction to a key theorem5 and an introduction to the celestial sphere for the simplest case of phenomenon at sphaera recta. In Book II, much of that work is extended to sphaera obliqua, but in both cases, we’ve only dealt with more or less fixed points on the celestial sphere: The celestial equator, ecliptic, and points within the zodiacal constellations based on the immovable stars.

But the ultimate goal of the Almagest and my project isn’t to study the unchanging sky; it’s to understand the changing sky: The sun, moon, and planets. Ptolemy decides to start with the position of the sun is a prerequisite to understanding the phases of the moon, and planets are more complicated with their retrograde motions. And to kick off the investigation of the motion of the sun, Ptolemy first begins by carefully defining a “year” noting

when one examines the apparent returns [of the sun] to [the same] equinox of solstice, one finds that the length of the year exceeds 365 days by less than $\frac{1}{4}$-day, but when one examines its return to the fixed stars, it is greater [than 365 $\frac{1}{4}$-days].

Continue reading “Almagest Book III: On the Length of the Year”

Almagest Book II: Angle Between Ecliptic And Altitude Circle – Calculations

In the last post, we started in on the angle between the ecliptic and an altitude circle, but only in an abstract manner, relating various things, but haven’t actually looked at how this angle would be found. Which is rather important because Ptolemy is about to put together a huge table of distances of the zenith from the ecliptic for all sorts of signs and latitudes. But to do so, we’ll need to do a bit more development of these ideas. So here’s a new diagram to get us going.

Here, we have the horizon, BED. The meridian is ABGD, and the ecliptic ZEH. We’ll put in the zenith (A) and nadir (G) and connect them with an altitude circle, AEG6. Although it’s not important at this precise moment, I’ve drawn it such that AEG has E at the point where the ecliptic is just rising. Continue reading “Almagest Book II: Angle Between Ecliptic And Altitude Circle – Calculations”

Almagest Book II: Angle Between Ecliptic And Horizon – Calculations

We’ll continue on with our goal of finding the angle the ecliptic makes with the horizon. Fortunately, this task is simplified by the symmetries we worked out in the last post meaning we’ll only need to work out the values from Aries to Libra. Unfortunately, this value will change based on latitude as well as the position on the ecliptic, but we’ll still only do this for one location. And for that location, Ptolemy again uses Rhodes.

First we’ll start with angles at the equinoxes:

Continue reading “Almagest Book II: Angle Between Ecliptic And Horizon – Calculations”

Almagest Book II: Angle Between Ecliptic and Meridian – Angle Calculations

Now that we’ve gotten a few symmetry rules developed, we can return to the main objective of calculating the angle between the ecliptic and meridian at different points along the ecliptic. Specifically, Ptolemy sets out to do this at the first point in every sign. But thanks to the previously derived symmetries, we’ll save ourselves a bit of work.

First Ptolemy does some very short proofs for these angles at the meridian and solstice, and then a slightly more complex one for the signs between them.

Continue reading “Almagest Book II: Angle Between Ecliptic and Meridian – Angle Calculations”

Almagest Book II: Applications of Rising-Time Tables

At this point we’ve spent some considerable time doing the work to develop our rising time tables. Now Ptolemy answers the question: What can we do with them?

Ptolemy provides several algorithms:

Length of a Day

Seasonal Hours (Alternative Method)

Seasonal Hours to Equinoctial Hours

Horoscopes

Upper Culmination (Alternative Method)

Rising Point

Continue reading “Almagest Book II: Applications of Rising-Time Tables”