In the last post, we introduced three eclipses from Babylonian times which we used to build a couple intervals: The first eclipse to the second, and the second to the third. Using those, we used lunar and solar mean motion tables to figure out the solar position, as well as its change. Since the moon must be opposite the sun in ecliptic longitude for an eclipse to occur, we used the change in solar position to determine the true change in lunar position in these intervals. From that, we could compare that to the mean motion to determine how much of it must be caused by the lunar anomaly. But while we’ve determined this component, we haven’t done anything with them yet.
So in this post, we’ll start using these to answer several questions that will build out the details of the model. Specifically, we want answers to questions like what is the radius of the epicycle? Where, in relation to the ecliptic was the mean moon during these eclipses and what was the equation of anomaly? That’s a lot of information to extract so I’m going to try to break it up a bit and in this post, we’ll only tackle the radius of the epicycle1
To begin, let’s sketch out the epicyclic lunar model2 with the three eclipses drawn on it.
Continue reading “Almagest Book IV: Babylonian Eclipse Triple Geometry – Radius of the Epicycle”