In the last post, we introduced two different models that could potentially explain the anomalous motion of the sun (or other objects). Specifically, the sun sometimes appears to move faster along the ecliptic than at other times1. The first model was the eccentric model in which the observer was placed off center. The second was the epicyclic in which the object would travel around the deferent on an epicycle.
Ptolemy stated that for the simple motion of the sun, either of these models would be sufficient. However, he wanted to demonstrate a key equivalence. Specifically that
for the eccentric hypothesis always, and for the epicyclic hypothesis when the motion at apogee is in advance, the time from least speed to mean is greater than the time from mean speed to greatest; for in both hypotheses the slower motion takes place at the apogee. But [for the epicyclic hypothesis] when the sense of revolution of the body is rearwards from the apogee on the epicycle, the reverse is true: the time from greatest speed to mean is greater than the time from mean to least, since in this case the greatest speed occurs at the apogee.