Introduction to the Celestial Sphere & Astronomical Coordinates

The goal in the next chapter in the Almagest, Ptolemy’s goal is to is to find the angle between the celestial equator and ecliptic. These are both features on the celestial sphere which, while fundamental to astronomy, are not terms we’ve yet explored (aside from a brief mention in the first chapter of Astronomia Nova). So before continuing, we’ll explore the celestial sphere a bit. In addition, if we’re to start measuring angles on that sphere, we will need to understand the coordinate systems by which we do so. Continue reading “Introduction to the Celestial Sphere & Astronomical Coordinates”

The Almagest – Book I: Corollaries to Ptolemy’s Theorem

If you’ve been following the Almagest posts, you’ll recall that we’ve done some work to derive the chord lengths of various angles. But Ptolemy’s goal is to derive the chord length for every angle between 0-180º in $\frac{1}{2}$º intervals. To do that, we’re going to have to develop some new tools using Ptolemy’s theorem on the angles we already know in order to add, subtract, and divide them. These new tools are referred to as corollaries since they come from applications of Ptolemy’s theorem.

The first one comes from the following diagram:

Continue reading “The Almagest – Book I: Corollaries to Ptolemy’s Theorem”

The Almagest – Book I: Ptolemy’s Theorem

We shall next show how the remaining individual chords can be derived from the above, first of all setting out a theorem which is extremely useful for the matter at hand.

Having derived a handful of special angle-chord relationships, Ptolemy next set out to derive a more general theorem to get the rest. So Ptolemy constructs a new diagram from which to start his calculations.

Continue reading “The Almagest – Book I: Ptolemy’s Theorem”

The Almagest – Book I: Sexagesimal & Ptolemy’s Math

Before continuing into the math portion of this book, a brief interlude is necessary to explore how Ptolemy does his math. Chiefly, he uses the sexagesimal system which is a base 60 (as opposed to our base 10). The reason for this is that 60 has a large number of factors, which means it’s ideal for quick math since it you can make lots of fractions out of it.

This may sound odd at first, but consider that in some respects, it’s one we already use for telling time. There are 60 minutes to an hour and 60 seconds to a minute. In fact, that’s where the word “second” for measuring time comes from as it was the second division of the whole number. Continue reading “The Almagest – Book I: Sexagesimal & Ptolemy’s Math”